The function
$$\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$$

is called a vector-valued function.
Also written $\vec{r}(t) = x(t) \hat{i} + y(t) \hat{j} + z(t) \hat{k}$
Input is a number t , output is a vector that depends on t .
Each of $x(t)$, $y(t)$, $z(t)$ is a function of t
The domain of \vec{r} is the set of possible inputs t for
 $x(t)$, $y(t)$, and $z(t)$.

Ex MML #8
Domain of
$$\vec{r}(t) = \sqrt{16 - t^2}, \sqrt{t'}, \frac{3}{\sqrt{7 + t}}$$
 is ...?
 $\times (t) = \int |t - t^2 | \vec{r}(t) = \frac{3}{\sqrt{t + t}}$
 $Y(t) = Jt$
Soli The size of $\times (t)$ is when $|6 - t^2 \ge 0 \implies |6 \ge t^2$

Sol: Domain of
$$X(t)$$
 is when $16-t^{-} \ge 0 \stackrel{(=)}{\Longrightarrow} 16 \ge t$
 $\iff 4 \ge |t|$
 $\iff 4 \ge t \ge -4$

Domain of
$$y(t)$$
 is $\{t: t \ge 0\}$
Domain of $z(t)$ is $\{t: 7+t \ge 0\} = \{t: t \ge -7\}$

domain of
$$r(t)$$
 is
 $\left\{ t: 0 \leq t \leq 4 \right\}$

domain of $r(t)$ is
 -74 or 4
domain of $y(t)$
domain of $z(t)$

Ex 5/ MML #9
Let
$$\overline{r}(t) = \cos(\pi t)$$
 $\hat{i} + \sin(\pi t)$ $\hat{j} + e^{-t}$ \hat{k} for $t \ge 0$.
a) What is $\lim_{t \to 2} \overline{r}(t)$?
 $\lim_{t \to 2} \cos(\pi t) = \cos(2\pi) = 1$
 $\lim_{t \to 2} \sin(\pi t) = \sin(2\pi) = 0$
 $\lim_{t \to 2} \frac{1}{e^2}$
 $\lim_{t \to 2} e^{-t} = e^{-2} = \frac{1}{e^2}$
Def We say a vector-valued function $\overline{r}(t) = \langle f(t), g(t), h(t) \rangle$
is continuous at $t = a$ if
each of $f(t), g(t), h(t)$ are continuous at $t = a$
 $(\operatorname{Recall} \operatorname{def} f(t) = f(a).)$

b.)
$$\lim_{t \to \infty} \cos(\pi t) \operatorname{does} \pi t \exp(5t)$$

 $t \to \infty$
 $\lim_{t \to \infty} e^{-t} = 0$ (exists)
 $t \to \infty$
 $\lim_{t \to \infty} \overline{r}(t) \operatorname{DNE}$. For this to exist, the limit would
 $t \to \infty$
have to exist for each component.

tx 2 Graph the spiral

$$\vec{r} = \langle 4 \cos t, \sin t, \frac{t}{2\pi} \rangle$$

where a) $0 \leq t \leq 2\pi$
b) $-\infty \leq t \leq \infty$
a) Projection of the curve in the xy-plane is
 $\langle 4 \cos t, \sin t, 0 \rangle$, an ellipse whose
yestitue direction is
 $(4 \cos t, \sin t, 0)$, an ellipse whose
yestitue direction is
 $(4 \cos t, \sin t, 0)$, an ellipse whose
yestitue direction is
the value of z increases as t gets larger,
so the positive direction is up.
b)
 $spiral$ fillowing an elliptical
cylinder
 $\vec{r}(t) = (3t\cos ist)\cos t i$
 $t (3 + \cos ist) \sin t i$
 $t \sin ist k$
 $From the turve from above)$