What are the basic geometrical objects in 3D? How do we describe them w/ equations? 13.5 Lines & planes in space T. Lines in 3D · Two pts in R³ determine a unique line (just like how two points in R² determine a unique line) · In 123, one point and a direction (vector) determine a unique line ((in IR2, one point & a slope determine a unique line) · The vector equation for the line l, passing through P. (Xo, Yo, 2.) in the direction of the vector $\vec{\nabla} = \langle a, b, c \rangle$ is $\langle X_1Y_1Z \rangle = \langle X_0, Y_0, Z_0 \rangle + t \langle a, b, c \rangle$ for real numbers t from origin to P(X,Y,Z), from origin a point on 1. a point on l to Po (Xo1Y01Zo) or write $\vec{r} = \vec{r_0} + tr$ for short · The parametric equations for the same line L is $\begin{array}{c} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{array}$ for $-\infty < t < \infty$

Ex:
Let L be the line through
$$(-3, 5, 8)$$
 and $(9, 2, -1)$.
A. Find the vector equation for L
b. Find parametric equations of the line segment from
 $(-3, 5, 8)$ to $(4, 2, -1)$
Solid Let Po
A) Direction of the line is $\overline{r} := \overline{P}, \overline{P}, = \langle 4 - (-5), 2 - 5, -(-8) \rangle$
a) Direction of the line is $\overline{r} := \overline{P}, \overline{P}, = \langle 4 - (-5), 2 - 5, -(-8) \rangle$
a) Direction of the line is $\overline{r} := \overline{P}, \overline{P}, = \langle 4 - (-5), 2 - 5, -(-8) \rangle$
a) Direction of the line is $\overline{r} := \langle 7, -3, -9 \rangle$
Take $\overline{r}_0 := \langle -3, 5, 8 \rangle$ (We can also take $\overline{r}_0 := \langle 4, 2, -7 \rangle$)
(from P.)
Comparents of Po
 $(-7, -3, -9)$
Take $\overline{r}_0 := \langle -3, 5, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 5, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 5, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 5, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 5, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 5, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 5, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 5, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$
 $\overline{r} := \langle -3, 7, 8 \rangle + t \langle 7, -3, -9 \rangle$