News

Reading HW to do prior to next class: Textbook Sec 13.6 Example 1 (cylinders), Example 2 (ellipsoid), Example 3 (elliptic paraboloid)

What are the basic geometrical objects in 3D? How do we describe them w/ equations? 13.5 Lines & planes in space T. Lines in 3D · Two pts in R³ determine a unique line (just like how two points in R² determine a unique line) · In 123, one point and a direction (vector) determine a unique line ((in IR2, one point & a slope determine a unique line) · The vector equation for the line l, passing through P. (Xo, Yo, 2.) in the direction of the vector $\vec{\nabla} = \langle a, b, c \rangle$ is $\langle X_1Y_1Z \rangle = \langle X_0, Y_0, Z_0 \rangle + t \langle a, b, c \rangle$ for real numbers t from origin to P(X,Y,Z), from origin a point on 1. a point on l to Po (Xo1Y01Zo) or write $\vec{r} = \vec{r_0} + tr$ for short · The parametric equations for the same line L is $\begin{array}{c} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{array}$ for $-\infty < t < \infty$

Ex:
Let L be the line through
$$(-3, 5, 8)$$
 and $(9, 2, -1)$.
A. Find the vector equation for L
b. Find parametric equations of the line segment from
 $(-3, 5, 8)$ to $(4, 2, -1)$
Soli
Let Po
A) Direction of the line is $\overline{r} := \overline{P}, \overline{P}_1 = \langle 4- (-5), 2-5, -(-8) \rangle$
a) Direction of the line is $\overline{r} := \overline{P}, \overline{P}_1 = \langle 4- (-5), 2-5, -(-8) \rangle$
a) Direction of the line is $\overline{r} := \overline{P}, \overline{P}_1 = \langle 4- (-5), 2-5, -(-8) \rangle$
a) Direction of the line is $\overline{r} := \overline{P}, \overline{P}_1 = \langle 4- (-5), 2-5, -(-8) \rangle$
a) Direction of the line is $\overline{r} := \overline{P}, \overline{P}_1 = \langle 4- (-5), 2-5, -(-8) \rangle$
b) Comparents of Po
 $(-7, -3, -9)$
Take $\overline{r}_0 := \langle -3, 5, 8 \rangle$ (We can also take $\overline{r}_0 := \langle 4, 2, -7 \rangle$)
 $(from P_1)$
 $($

Ex:
Ex:
Ex 6 (Look)
Find an equation of the plane that passes
through the points P(2,-1,3), Q(1,4,0), and R(0,-1,5).
Sol:

$$\vec{n} = \prod_{\vec{n} \neq \vec{n}} R$$

 $\vec{n} = \prod_{\vec{n} \neq \vec{n}} R$
 $\vec{n} = \prod_{\vec{$

Find an equa Q: x+2y+z=5 and R: 2X+y-z=7 intersect.

Soli

. The normal vectors of the planes Q and R, $\vec{n}_{R} = \langle 1, 2, 1 \rangle$ and $\vec{n}_{R} = \langle 2, 1, -1 \rangle$ are not scalar multiples of each other. · So the planes are not parallel, hence they must intersect in a line I.

(court to the next page)

•To describe the line l, we need:
1. a point Po on l
2. a vector
$$\vec{v}$$
 parallel to l
1. Find Po: *Set $z=0$ to find a point on the xy -plane:
*Eq for plane Q: $x+2y=5$
*Eq for plane R: $2x+y=7$ $\Rightarrow \frac{-4x-2y=-14}{-3x} = -9 \Rightarrow x=3$
So, take Po(3,1,0) $\xrightarrow{v=s=0}$
2. Find \vec{v} : *Because l lies in both plane Q and plane R,
 l l is orthogonal to both
the normal vectors \vec{n}_Q and \vec{n}_R
*Since $\vec{n}_Q \times \vec{n}_R$ is orthogonal to both \vec{n}_Q and \vec{n}_R ,
we know $\vec{n}_Q \times \vec{n}_R$ is parallel to l:
so take $\vec{v} = \vec{n}_Q \times \vec{n}_R = \begin{bmatrix} 1 & j & k \\ 1 & 2 & 1 \\ 2 & 1 & -1 \end{bmatrix} = \langle -3, 3, -3 \rangle$
Therefore, a possible vector equation for the line l is
 $\langle x, y, z \rangle = \langle 3, 1, 0 \rangle + t \langle -3, 3, -3 \rangle$ for $-\infty < t < \infty$
and a possible parametric equation for L is
 $x=3-3t$, $y=1+3t$, $z=-3t$ for $-\infty < t < \infty$

Exfra Ex (MML #9) Find the point at which the -4x+9y-22=13 & the plane x=10+9t, Y=-4-6t, Z=7-6t line mfer sect Sub the line parametric of S. 1: into plant eg: -4 (10+9+)+9(-4-6+)-2(7-6+)=13 -40-36t - 36-54t - 14+12t = 13 -90 - 78 E = 13 -103 = 78 t $\frac{-103}{78} = t$ $X = 10 + 9\left(\frac{-103}{78}\right) + sub into parametric$ eqs of lineto find x, y, 2 $\gamma = -4 - 6 \left(-\frac{103}{78} \right)$ Ans: the point $Z = 7 - 6 \left(\frac{-103}{29} \right)$ $\left(-\frac{49}{26},\frac{51}{13},\frac{194}{13}\right)$