

13.4 Cross products
Idea of cross product Given vectors
$$\overline{a} \not\in \overline{b}$$
,
find a third nonzero vector \overline{c} that is perpendicular
to both \overline{a} and \overline{b}
Geometric def of cross product

Q: What is the length of
$$\vec{a} \times \vec{b}$$
? Hint: \vec{n} is unit vector
Ans: $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$

Fact
Two nonzero vectors
$$\vec{a}$$
 and \vec{b} are parallel if and only if
 $\vec{a} \times \vec{b} = \vec{0}$
Why?
sin θ is 0 if and only if $\theta = 0$ or π

Recall the coordinate unit vectors (standard
basis vectors)

$$i = (1,0,0)$$
 $j = (0,1,0)$ $k = (0,0,1)$
 $i \times j = k$ $j \times k = i$ $k \times i = j$
"To help you remember":
 $j \times i = -k$ $k \times j = -i$ $i \times k = -j$
Some facts about the cross product
 $a \times b = -b \times a$ for all vectors $\overline{a}, \overline{b}$
 $b \ln$ general,
 $(a \times b) \times c \neq a \times (b \times c)$ Not associative!
 E_{-2} .
 $i \times i = 0 \times j = 0$

Algebraic Def cross products

A determinant of order 2 is defined by
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

E-9. $\begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} = |(7) - 3(2)| = 1$
Let $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$
 $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$
 $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$
 $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$
 $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$
 $\mathbf{called} = \mathbf{a} + \mathbf{a} + \mathbf{a} + \mathbf{a} + \mathbf{b} + \mathbf{b} + \mathbf{c} + \mathbf{b} + \mathbf{c} +$

Example :

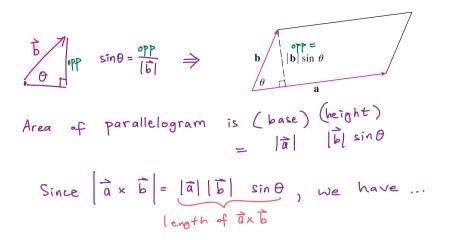
If $\mathbf{a} = \langle 1, 3, 4 \rangle$ and $\mathbf{b} = \langle 2, 7, -5 \rangle$,

find a unit vector with positive first coordinate orthogonal to both \mathbf{a} and \mathbf{b} .

Solution Any scalar multiple of $\vec{a} \times \vec{b}$ is orthogonal to both $\vec{a} \not\in \vec{b}$
(i) If $\mathbf{a} = \langle 1, 3, 4 \rangle$ and $\mathbf{b} = \langle 2, 7, -5 \rangle$, then
$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 4 \\ 2 & 7 & -5 \end{vmatrix}$
$= \begin{vmatrix} 3 & 4 \\ 7 & -5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 4 \\ 2 & -5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} \mathbf{k}$
$= (-15 - 28)\mathbf{i} - (-5 - 8)\mathbf{j} + (7 - 6)\mathbf{k} = -43\mathbf{i} + 13\mathbf{j} + \mathbf{k}$
(i) To get a vector in opposite direction as $\vec{a} \times \vec{b}$, do scalar multiplication $-1 \left(-43\mathbf{i} + 13\mathbf{j} + \mathbf{k}\right) = \langle 43, -13, -1 \rangle$
(iii) To get a unit vector, scalar multiply $\frac{1}{43}, -13, -1$ where $l = \sqrt{(t_3)^2 + (t_3)^2 + (t_3)^2}$

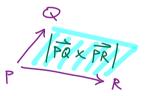
length of axb

Physical meaning of [āxb]



The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .

EXAMPLE Find the area of the triangle with vertices P(1, 4, 6), Q(-2, 5, -1), and R(1, -1, 1).



A

$$\overrightarrow{PQ} = (-2 - 1)\mathbf{i} + (5 - 4)\mathbf{j} + (-1 - 6)\mathbf{k} = -3\mathbf{i} + \mathbf{j} - 7\mathbf{k}$$

$$\overrightarrow{PR} = (1-1)\mathbf{i} + (-1-4)\mathbf{j} + (1-6)\mathbf{k} = -5\mathbf{j} - 5\mathbf{k}$$

We compute the cross product of these vectors:

$$\vec{PQ} \times \vec{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 1 & -7 \\ 0 & -5 & -5 \end{vmatrix}$$
$$= (-5 - 35)\mathbf{i} - (15 - 0)\mathbf{j} + (15 - 0)\mathbf{k} = -40\mathbf{i} - 15\mathbf{j} + 15\mathbf{k}$$
$$= (-5 - 35)\mathbf{i} - (15 - 0)\mathbf{j} + (15 - 0)\mathbf{k} = -40\mathbf{i} - 15\mathbf{j} + 15\mathbf{k}$$
$$= (ergth)$$
$$= (ergth)$$
$$= \sqrt{(-40)^2 + (-15)^2 + 15^2} = 5\sqrt{82}$$

The area A of the triangle PQR is half the area of this parallelogram, that is, $\frac{5}{2}\sqrt{82}$.