News :

. Drop-in office Hours: Wed 2-3=15 pm Fri 1:30-3:15 pm @ Southwick Hall 350 M -Also available by appointments on MWF morning & afternoon (at Southwick Hall or via Zoom)

Recall

• Can we "multiply" two vectors ? dot product: "product" of two vectors is a number cross product: "product" of two vectors is a vector

13.3 Dot I	Products (also called the scalar products or inner products)
1 Definition	
lt	$\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$, then
	$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$
If ā	= $\langle a_{1}, a_{2} \rangle$ and $\vec{b} = \langle b_{1}, b_{2} \rangle$, then $\vec{a} \cdot \vec{b} = a_{1}b_{1} + a_{2}b_{2}$
Note à.	$\vec{b} = \vec{b} \cdot \vec{a}$ (The order of the vectors doesn't matter)
EXAMPLE	$\langle 2, 4 \rangle \cdot \langle 3, -1 \rangle = 2(3) + 4(-1) = 2$ $\langle -1, 7, 4 \rangle \cdot \langle 6, 2, -\frac{1}{2} \rangle = (-1)(6) + 7(2) + 4(-\frac{1}{2}) = 6$
$\frac{Fact}{\mathbf{a} \cdot \mathbf{a}} = \mathbf{a} $	$\frac{ w_{hy} ^{2}}{\ddot{a} \cdot \ddot{a} \stackrel{\text{def}}{=} \langle a_{1}, a_{2} \rangle \cdot \langle a_{1}, a_{2} \rangle = a_{1}^{2} + a_{2}^{2}$
	$ \vec{a} ^2 = (e_1 ^2 + a_2)^2 = (\vec{a} ^2 + a_2)^2 = a_1^2 + a_2^2$

Justification for "geometric meaning"
Law of Cosines

$$S = Distance between R and T$$

$$= \sqrt{(t - r \cos \theta)^{2} + (o - r \sin \theta)^{2}}$$

$$S^{2} = (t - r \cos \theta)^{2} + r^{2} (\sin \theta)^{2}$$

$$S^{4} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{4} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{4} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{4} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{4} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{4} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{4} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{4} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{4} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{4} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{5} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{5} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{5} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{5} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{5} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{5} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{5} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{5} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{5} = t^{2} - 2tr \cos \theta + r^{2} (\cos \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{5} = t^{2} - 2tr \cos \theta + r^{2} (\sin \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{5} = t^{2} - 2tr \cos \theta + r^{2} (\sin \theta)^{2} + r^{2} (\sin \theta)^{3}$$

$$S^{5} = t^{2} - 2tr \cos^{2} + r^{2} (\sin \theta)^{2} + r^{2} (\sin \theta)^{2} + r^{2} (\sin \theta)^{2}$$

$$S^{5} = t^{2} - 2tr \cos^{2} + r^{2} (\sin \theta)^{2} + r^{2} (\sin \theta)$$

$$o = -2|\overline{a}||\overline{b}| \cos \theta + 2\overline{a} \cdot \overline{b}$$

So $\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}| \cos \theta$

Geometric meaning of the dot product

Theorem If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Corollary If θ is the angle between the nonzero vectors **a** and **b**, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

Orthogonal Projections

1. Sketch proj \overline{a} \overline{b} and scal \overline{a} \overline{b} (orthogonal) projection scalar component of \overline{b} onto \overline{a} of \overline{b} in the direction of \overline{a}

2. Compute
$$scal_{\overrightarrow{a}} \overrightarrow{b}$$

Sol: $scal_{\overrightarrow{a}} \overrightarrow{b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|} = \frac{\langle 3, 4 \rangle \cdot \langle 4, 1 \rangle}{|\langle 3, 4 \rangle|} = \frac{3(4) + 4(1)}{|\sqrt{3^2 + 4^2}} = \frac{16}{\sqrt{25}} = \frac{16}{5}$
b use this formula
instead of $|\overrightarrow{b}| \cos \theta$
because we don't know
the angle between \overrightarrow{a} and \overrightarrow{b}

3. Compute
$$\operatorname{proj}_{\vec{a}} \vec{b}$$

Sol: $\operatorname{proj}_{\vec{a}} \vec{b} = \left(\operatorname{scal}_{\vec{a}} \vec{b}\right) = \left(\overrightarrow{a} = \frac{16}{5} \left\langle \frac{3}{5}, \frac{4}{5} \right\rangle$

Similar to MML 10

