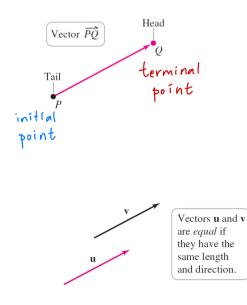
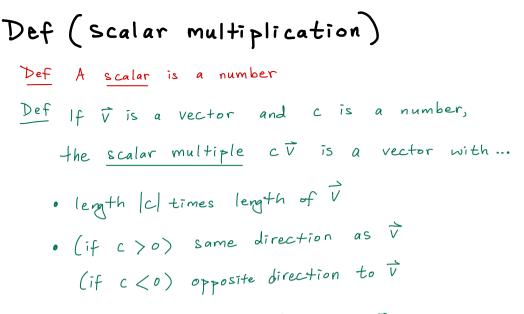
13.1 2D Vectors in the plane

Def (vector)

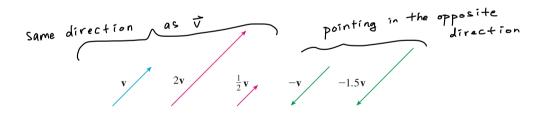
A vector is a quantity with length (magnitude) and direction. Ex: g = (2,2) A = (1,0) A = (1,0)





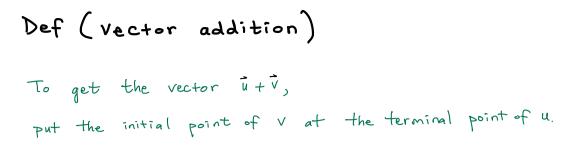
• If C = 0 or $\overline{V} = \overline{0}$, then $C\overline{V} = \overline{0}$.

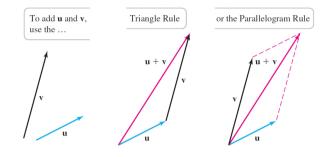
Scalar multiples of V



The numbers $1, 2, \frac{1}{2}, -1, -1.5$ "scale" the vector \vec{v} . That's why they are called scalars.

Note: Two vectors are <u>parallel</u> (i.e. having the same or opposite direction) if they are scalar multiples of one another.

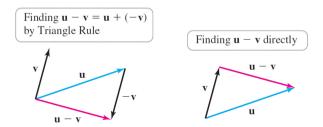


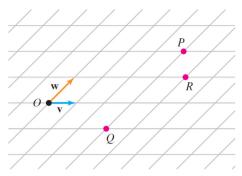


Then	ū+ v	is	The	vector	from	the	ini tial	point	of	ū
					to th	e te	erminal	point	۰f	\overrightarrow{v}

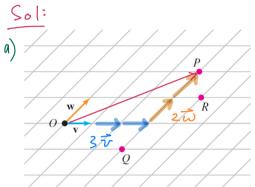
$$F_{acf}: \quad \overline{u} + \overline{v} = \overline{v} + \overline{u}$$

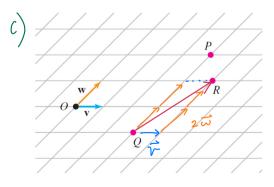
Vector Subtraction:



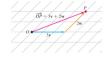


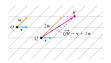
Ex: Write the vectors a) \overrightarrow{OP} , b) \overrightarrow{OQ} , c) \overrightarrow{QR} as sums of scalar multiples (linear combinations) of \overline{v} and \overline{w} .





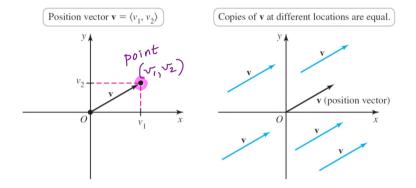
(Extra Ex)





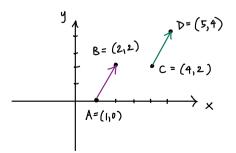
Vector Components

A vector \vec{v} with its tail at the origin and head at the point (a,b) is called a position vector and is written <a, b>. x-component of \vec{r} y-component of \vec{r}



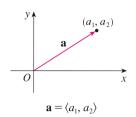
EX:

Find a vector with representation given by CD



 $\frac{\text{Answer}}{4-2}$ = <1,2>

Magnitude or length of a vector



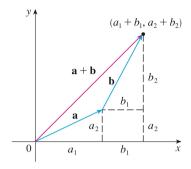
The length of the two-dimensional vector
$$\mathbf{a} = \langle a_1, a_2 \rangle$$
 is
(or magnitude)
 $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$

Ex: Given the points
$$\not\models(-3,4)$$
 and $Q(6,5)$,
find the components and magnitude of
the vector \overrightarrow{PQ} .

Sol: a)
$$PQ = \langle 6 - (-3), 5 - 4 \rangle = \langle 9, 1 \rangle$$

X-component is 9
Y-component is 1
b) Magnitude $|PQ|$ is $\sqrt{9^2 + 1^2} = \sqrt{82}$

Adding vectors using algebra



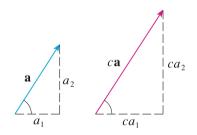
If
$$\mathbf{a} = \langle a_1, a_2 \rangle$$
 and $\mathbf{b} = \langle b_1, b_2 \rangle$, then
 $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$
Add each component
of $\overline{\mathbf{a}}$ and $\overline{\mathbf{b}}$

$$E \times: \text{ If } \mathbf{a} = \langle 4, 0 \rangle \text{ and } \mathbf{b} = \langle -2, 1 \rangle,$$

$$\mathbf{a} + \mathbf{b} = \langle 4, 0 \rangle + \langle -2, 1 \rangle$$

$$= \langle 4 + (-2), 0 + 1 \rangle = \langle 2, 1 \rangle$$

Scaling vector using algebra



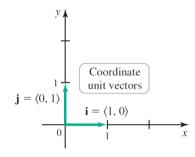
$$c\mathbf{a} = \langle ca_1, ca_2 \rangle$$

Multiply each Component of à by c

$$\mathbf{E} \times : \quad \text{If } \mathbf{a} = \langle 4, 0 \rangle \text{ and } \mathbf{b} = \langle -2, 1 \rangle,$$
$$2\mathbf{a} + 5\mathbf{b} = 2\langle 4, 0 \rangle + 5\langle -2, 1 \rangle$$
$$= \langle 8, 0 \rangle + \langle -10, 5 \rangle = \langle -2, 5 \rangle \rangle$$

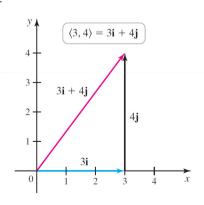
Unit Vectors

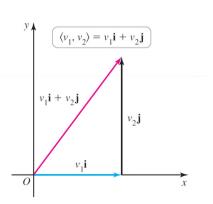
Any vector with length 1 is a unit vector. Ex: Coordinate unit vectors $\hat{1} = \langle 1, 0 \rangle$ and $\hat{j} = \langle 0, 1 \rangle$ (also called standard basis vectors)



Any 2D vector can be written as a linear <u>Combination</u> aît bj of î and ĵ: In general: (Extra)

EX:





Ex: Consider the points
$$P(1,-2)$$
 and $Q(6,10)$.
a) Find two unit vectors parallel to \overline{PQ} .
Sol: $\overline{PQ} = \langle 6-1, 10-(-2) \rangle = \langle 5, 12 \rangle$ or $5\hat{1}+12\hat{j}$
Length of \overline{PQ} is $|\overline{PQ}| = \sqrt{5^2+12^2} = \sqrt{25+144} = \sqrt{169} = 13$
. The unit vector pointing in the same direction
as \overline{PQ} is $\frac{\overline{PQ}}{|\overline{PQ}|} = \frac{1}{13} \langle 5, 12 \rangle = \left\langle \frac{5}{13}, \frac{12}{(3)} \right\rangle$
or $\frac{5}{13}\hat{i} + \frac{12}{13}\hat{j}$

• The unit vector parallel to
$$\overrightarrow{PQ}$$
 with the opposite
direction is $-\frac{\overrightarrow{PQ}}{|\overrightarrow{PQ}|} = \left\langle -\frac{5}{13}, -\frac{12}{13} \right\rangle$

b.) Find two vectors of length 2 parallel to PQ Sol: Multiply the two unit vectors above by 2:

$$2\left(\frac{5}{13}\hat{i} + \frac{12}{13}\hat{j}\right) = \frac{10}{13}\hat{i} + \frac{24}{13}\hat{j}$$
$$2\left(-\frac{5}{13}\hat{i} - \frac{12}{13}\hat{j}\right) = -\frac{10}{13}\hat{i} - \frac{24}{13}\hat{j}$$

MML Problem 16 (Extra)

Let $\overline{u} = \langle 1, 1 \rangle$, $\overline{v} = \langle 5, -1 \rangle$, and $\overline{w} = \langle -4, 0 \rangle$. Find the vector \overline{x} that satisfies $10\overline{u} - \overline{v} + \overline{x} = 8\overline{x} + \overline{w}$.

Answer:

$$10\vec{u} - \vec{v} - \vec{\omega} = 7\vec{x}$$

$$\frac{1}{7}\left(10\vec{u} - \vec{v} - \vec{\omega}\right) = \vec{x}$$

$$\vec{x} = \frac{1}{7} \left(\left< 10.1, 10.1 \right> - \left< 5, -1 \right> - \left< -4, 0 \right> \right)$$
$$= \frac{1}{7} \left(\left< 10 - 5 + 4, 10 + 1 \right> \right)$$
$$= \frac{1}{7} \left< 9, 11 \right>$$
$$= \left< \frac{9}{7}, \frac{11}{7} \right>$$