News

- See Black Leard - This coming Mon : Quiz 2 } The following Wed: Quiz 3 J for which MML to study
- Before next class, read: Textbook Sec 13.5 "Lines & planes in space" · Example 1 or 2 (lines)
 - · Example 5 or 6 (planes)
 - · Example 8 or 9 (parallel or orthogonal planes)

12.1 Parametric equations
12.1 Parametric equations
14ca: A turtle moves along a curve in 2.D.
The position
$$(x,y)$$
 of the turtle
Called parametric curve
The position (x,y) of the turtle
Can be described by
 $x = f(t)$ of called (a set of)
 $y = g(t)$) parametric equations of time $t^{t'}$
Ex 1: Sketch and identify the curve defined by the parametric equations $\begin{cases} x=t^2-2t & \text{for } -2 \le t \le 4 \\ (A) & (b) \end{cases}$
 $presented to the f(t), g(t) are functions of time $t^{t'}$
Ex 1: Sketch and identify the curve defined by the parametric equations $\begin{cases} x=t^2-2t & \text{for } -2 \le t \le 4 \\ (A) & (b) \end{cases}$
 $presented to the direction in the direction in which a parametric equations is the direction in which a parametric curve is created as the parameter increases
 q Sometimes it's possible to eliminate the parameter (t) from parametric equations:
 $presented to the set of the$$$

$$\frac{(\operatorname{ircles} E \times 2)}{(\operatorname{like} MML \# 6)}$$
a) Describe the positive orientation of the curve
given by the parametric equations

$$x = 6 + 5 \cos t \quad for \quad 0 \leq t \leq 2\pi$$
Sol:

$$x = 6 + 5 \sin t \quad for \quad 0 \leq t \leq 2\pi$$
Sol:

$$(x(1), y(1)) = (6 + 0, 8 + 5)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (6 + 5(1), 8 + 0)$$

$$x = (x(2), y(2)) = (1, 8)$$

$$y = (x(2), y(2)) = (1, 8)$$

$$x = (x(2), y(2)) = (1,$$

C) In general, the curve

$$x = x_0 + R \cos\left(\frac{2\pi}{b}t\right)$$
 for $0 \le t \le b$
 $y = y_0 + R \sin\left(\frac{2\pi}{b}t\right)$ for $0 \le t \le b$
here b is a
positive number
traces the circle with radius R
centered at (x_0, y_0) ONCE, in
Counterclockwise direction.
d) In general, in this situation we can always
remove the parameter:
 $(x - x_0)^2 = R^2 \cos^2(\Box)$
 $(y - y_0)^2 = R^2 \cos^2(\Box)$ +
 $(x - x_0)^2 + (y - y_0)^2 = R^2 \left[\cos^2(\Box) + \sin^2(\Box)\right]$
tegual to 1 because of the
Pythagorean Thm: for the circle
with radius R centered at (x_0, y_0) is
 $\left[(x - x_0)^2 + (y - y_0)^2 = R^2\right]$
See Sec 13.2.

Lines * The parametric equations

$$x = x_0 + at \begin{cases} fir - \infty < t < \infty \\ y = y_0 + bt \end{cases} fir - \infty < t < \infty \\ describe the line passing through (x_0, y_0), wy slope $\frac{b}{a}$
when $t = 0$ (if $a \neq 0$)
Here the positive orientation is
(direction as t increases)
[left to right if $a > 0$
the opposite direction if $a < D$
In this situation, we can eliminate the parameter
to get ... $x = x_0 + at \Rightarrow \frac{x - x_0}{a} = t$
Sub this first equation into $y - y_0 = bt$:
 $y - y_0 = \frac{b}{a} (x - x_0)$ an equation in $x \neq y$
* The parametric equations $x = x_0$
 $y = y_0 + bt$ for $-\infty < t < \infty$
describes a vertical line ("sloper is undefined)
passing through the point (x_0, y_0).
Positive orientation is toward north if $b > 0$
. Equation in $x \neq y$ wy the parameter is $x = x_0$$$

Ex 3:

(like MML #3)

Consider parametric equations

$$x = -2 + 3t \quad \text{for } -\infty < t < \infty$$
a) Eliminate the parameter to obtain
an equation in x and y

Sol: Solve first of for t:

$$x + 2 = 3t$$

$$\frac{x + 2}{3} = t$$
Replace t in the Second of w/ $\frac{x + 2}{3}$

$$y = 4 - b \left(\frac{x + 2}{3}\right)$$

$$y = 4 - 2x + 4 \quad \Rightarrow \quad y = -2x$$

b) sketch parametric curve & indicate posorientation: Sol: (because "3" is positive, positive orientation is left to right)

Ex 4:
Find a set of parametric equations for (like MML #887)
the line segment from point
$$\mathcal{P}(4,7)$$
 to $(\mathcal{Q}(2,-3))$.
Sol: Slope of this line is $\frac{Y_{1-}Y_{1-}}{X_{1-}X_{1-}}$ (or $\frac{Y_{1-}Y_{1-}}{X_{1-}X_{2-}}$
which is $\frac{7-(-3)}{4-2} = \frac{10}{2} = 5$.
Now choose 9, b so that $\frac{b}{a} = 5$, e.g. choose $a=1, b=5$.
Then the parametric equations
 $(*)$ $x=4+t$ for $t\in for,\infty$
give the line by slope 5 passing through $\mathcal{P}(4,7)$
from left to right.
However, what we want is the line segment
for $\mathcal{P}(4,7)$ to $\mathcal{Q}(2,-3)$, right to left.
 $x=4$ $x=2$
So replace our a, b in $(*)$ by $a=-1, b=-5$: $x=4-t$
 $y=7-5t$
Next, find the correct interval:
The starting point of t should be 0 so that
we have $\mathcal{P}(4,7)$ at the beginning.
The ending point of t should be when
 $x(t)=2$ $2=4-t$ $3 \Rightarrow t=2$
So the interval is $\mathcal{O} \leq t \leq 2$
Note: We can choose other by such that $\frac{b}{a}=5$, so there are
infinitely many possible answers.