- s) Pg 1 of 2
- 1. Who are the other people in your group? What is their favorite breakfast food? What is your group number?
- 2. What is an equation of the lower half of the circle in the xy-plane? Sketch them.
- 3. Write an equation of the lower hemisphere of the sphere of radius 10 centered at the origin. Sketch them.
- 4. Write down the equation of a paraboloid which opens up, whose z-intercept is (0, 0, 5). Write down the same paraboloid which opens down.
- 5. Let $f(x, y) = 9y x^2y y^2 + 6$.
 - (a) Compute ∇f .

(b) Find a unit vector **v** which gives the direction of steepest descent (fastest decrease) for the function f(x, y) at the point (x, y) = (3, -1). Then compute $D_{\mathbf{v}}f(3, -1)$.

(c) Find a nonzero vector in \mathbb{R}^2 which gives a direction of no change in the function f(x, y) from the point (x, y) = (3, -1).

(d) Find the critical points of f(x, y), then classify them using the second derivative test.

(e) For this part only, assume that x, y are both functions of t, u. Set up the chain rule for computing $\frac{\partial f}{\partial t}$. Then compute $\frac{\partial f}{\partial t}$ if $x = t^3 u$ and $y = tu^2$.

6. Let R be the region in the xy-plane bound by the lines x + y = 2, y - x = 2, and y = 5. Set up a single iterated double integral to compute $\iint_R f(x, y) dA$ using the order of integration dx dy or dy dx (whichever one is appropriate). Then compute the double integral using the function $f(x, y) = x^2$.

Answers:

- 1. Group members
- 2. $y = -\sqrt{r^2 x^2}$ (lower semicircle)
- 3. Sphere of radius 10 centered at the origin: $x^2 + y^2 + z^2 = 100$ Solving for z, we get $z = \sqrt{100 - x^2 - y^2}$ (hemisphere above the xy-plane) and $z = -\sqrt{100 - x^2 - y^2}$ (hemisphere below the xy-plane).
- 4. Basic circular paraboloid: $z = x^2 + y^2 + 5$ (opens up) and $z = 5 x^2 y^2$ (opens down).
- 5. (a) $\langle -2xy, 9 x^2 2y \rangle$ (b) $\mathbf{v} = \langle -\frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}} \rangle$, $D_{\mathbf{v}}f(3, -1) = -2\sqrt{10}$

- (c) $\langle 1, -3 \rangle$ or any nonzero scalar multiple of this vector
- (d) Critical points: $(0, \frac{9}{2}), (3, 0), (-3, 0)$
 - $(0,\frac{9}{2})$ is a local maximum, and the other two points are saddle points.

(e) Chain rule:
$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t}$$

2nd answer: $-7t^6u^4-2tu^4+9u^2$

6. Iterated integral: $\int_{2}^{5} \int_{-y+2}^{y-2} f(x,y) \, dx \, dy$ 2nd answer: $\iint_{R} x^2 \, dA = \frac{27}{2}$