Math 2310 Multivariable Calculus III Group Quiz Four (No notes/phones)		Pg 1 of 2
First & Last Name:	Student ID:	
First & Last Name:	Student ID:	
First & Last Name:	Student ID:	
First & Last Name:	Student ID:	

- 1. Consider the plane R which contains the line $\mathbf{r}(t) = \langle 1 + 3t, 2t, 7 5t \rangle$ and the point P(3, 1, 4).
 - (a) Find a normal vector to the plane R.
 - (b) Find an equation for the plane R.
- 2. Consider the line ℓ in \mathbb{R}^3 which is parallel to the vector $\mathbf{v} = \langle 2, -2, 1 \rangle$ and which contains the point P(5, 0, -3). Also, let Q be the point (6, 3, 2), and let $\mathbf{u} = \overrightarrow{PQ}$.
 - (a) Find the equation of the plane which is parallel to the yz-plane and contains the point P.
 - (b) Compute the components of the vector **u**. Express your answer in the form $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$.
 - (c) Find an equation for the sphere S which contains the point Q and has center P.
 - (d) Write inequalities representing the set of points outside of the sphere S from part (a)
 - (e) Find a parametrization of the line ℓ using the parameter t so that the point P corresponds to t = 0. Express your answer as a vector function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$.
 - (f) Compute the unit vector in the direction of \mathbf{v} .
 - (g) Compute the vector in the direction opposite to \mathbf{v} of length 7.

3. Let $\mathbf{r}(t) = e^{3t}(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k})$. Compute the following:

(a)
$$\int \mathbf{r}(t) dt$$
 (b) $\mathbf{r}'(t)$

- 4. Consider the vector function $\mathbf{r}(t) = \langle 2t, t^2, \frac{t^3}{3} \rangle$.
 - (a) Find the velocity and speed of the function $\mathbf{r}(t)$.
 - (b) Compute the unit tangent vector $\mathbf{T}(t)$.

(c) Compute the curvature at t = 1. You can use the curvature formula $\frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}$ or $\frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^3}$.

(d) Find all points of intersection between the curve $\mathbf{r}(t)$ and the plane 4x - 6y + 3z = 0.

Answers:

- 1. (a) A vector which is parallel to the line is $\langle 3, 2, -5 \rangle$. Pick a point Q on the line, for example Q(1,0,7). Your answer could be the cross product $\overrightarrow{QP} \times \langle 3, 2, -5 \rangle =$ $\langle 2, 1, -3 \rangle \times \langle 3, 2, -5 \rangle = \boxed{\langle 1, 1, 1 \rangle}$, or any nonzero scalar multiple such as $\boxed{\langle -3, -3, -3 \rangle}$.
 - (b) (x-3) + (y-1) + (z-4) = 0 or x + y + z = 8. Equivalently, any nonzero multiple of this equation such as 5x + 5y + 5z = 40 would work.

2. (a)
$$x = 5$$

- (b) i + 3j + 5k
- (c) $(x-5)^2 + y^2 + (z+3)^2 = 35$
- (d) $(x-5)^2 + y^2 + (z+3)^2 > 35$
- (e) $\mathbf{r}(t) = \langle 5 + 2t, -2t, -3 + t \rangle$ for $t \in (-\infty, \infty)$

- (f) $\frac{2}{3}\mathbf{i} \frac{2}{3}\mathbf{j} + \frac{1}{3}\mathbf{k}$
- (g) $-\frac{14}{3}i + \frac{14}{3}j \frac{7}{3}k$
- 3. (a) $\frac{1}{3}e^{3t}\mathbf{i} + \frac{2}{3}e^{3t}\mathbf{j} e^{3t}\mathbf{k} + \mathbf{C}$ where $\mathbf{C} = C_1\mathbf{i} + C_2\mathbf{j} + C_3\mathbf{k}$ is an arbitrary constant vector.
 - (b) $3e^{3t}\mathbf{i} + 6e^{3t}\mathbf{j} 9e^{3t}\mathbf{k}$
- 4. (a) velocity $\mathbf{v}(t) = \langle 2, 2t, t^2 \rangle$ speed $|\mathbf{v}(t)| = t^2 + 2$
 - (b) $\langle \frac{2}{t^2+2}, \frac{2t}{t^2+2}, \frac{t^2}{t^2+2} \rangle$ (c) 2/9
 - (d) $(0,0,0), (4,4,\frac{8}{3}), (8,16,\frac{64}{3})$