Math 1152Q: Spring '18

Week 3 SAMPLE Quiz, Monday, Jan 29

Topics: Sec 11.1: Definition of convergence, ϵ , N proof, bounded sequences, decreasing/increasing sequences, Monotone Sequence Theorem. Sec 11.2: convergence/divergence of geometric series.

- 1. (Vocabulary)
 - (a) Let {b_n} be a sequence. What does it mean to write lim_{n→∞} b_n = ∞? Use Def 5, with M and N. Warning: do not include variations of the words "converge", "diverge", "approach", "increase", "continuously", or "infinity" in your answer.
 (Answer: Sec 11.1 Def 5 page 697)
 - (b) Given a sequence {a_n}, what does lim_{n→∞} a_n = 4 mean? Use the ε and N definition. Do not write 'limit', 'converge', 'approach', 'close to 4', etc. (Answer: Sec 11.1 Def 2 pg 696)
- 2. $(\epsilon, N \text{ proof})$ Let ϵ be a positive number smaller than 1.
 - (a) The sequence $a_n = \frac{5n^2 9}{n^2 4}$ converges to 5. Choose N so that $|a_n 5| < \epsilon$ whenever n > N. (Answer: https://egunawan.github.io/spring18/notes/notes11_1choosingN.pdf)
 - (b) The sequence $a_n = \frac{n-1}{7n+4}$ converges to 1/7. Choose N so that $|a_n 1/7| < \epsilon$ whenever n > N. Show that this N works.
 - (c) Give a positive number N such that, $\frac{1}{n^2 8} < \epsilon$ for all n > N. Show that this N works.
 - (d) The sequence $a_n = \frac{2n+4}{5n-8}$ converges to 2/5. For any (small) number $\epsilon > 0$, choose N so that if n > N, then $\left|\frac{2}{5} a_n\right| < \epsilon$.
 - (e) The sequence $a_n = \frac{n^2 + 1}{7n^2 + 5}$ converges to 1/7. For any (small) number $\epsilon > 0$, find N so that $|1/7 a_n| < \epsilon$ as long as n > N.
- 3. i.) Fill in the blanks with either the sign \leq or \geq .

$$\frac{5n!}{2^n} \qquad \qquad \left(\frac{1}{2}\right)^n \quad \text{for all } n \ge 1$$
$$\frac{n-1}{7n+4} \qquad \qquad \frac{1}{7} \quad \text{for all } n \ge 1$$
$$\frac{n+1}{7n-4} \qquad \qquad \frac{1}{7} \quad \text{for all } n \ge 1$$

- ii.) (Graphing Review) Sketch each function. Label the asymptote/s and zero/s of the graph.
 - (a) $f(x) = \frac{x-1}{7x+4}$ Answer:
 - $f(x) = \frac{x-1}{7x+4}$ has a horizontal asymptote at $\frac{1}{7}$ because $\lim_{x \to \infty} f(x) = 1/7$.
 - Note that $f(x) = \frac{x-1}{7x+4}$ is not defined for x = -4/7 and that -4/7 is not a zero of the numerator x-1. This tells us that $f(x) = \frac{x-1}{7x+4}$ has a vertical asymptote at $x = -\frac{4}{7}$.
 - Definition: The graph of y = f(x) is said to have a vertical asymptote x = a if $\lim_{x \to a^-} f(x) = \pm \infty$ or $\lim_{x \to a^+} f(x) = \pm \infty$.
 - To figure out whether your graph approaches $+\infty$ or $-\infty$ to the right, plug in a number bigger than a and estimate whether it looks very large (positive) or very large (negative).

(b)
$$g(x) = \frac{x+1}{7x-4}$$

(c) $h(x) = \frac{1}{x+5}$

iii.) By just looking at your sketches above, determine whether each of the following sequences is increasing or decreasing (or neither) for $n = 1, 2, 3, \ldots$

(a)
$$\left\{\frac{n-1}{7n+4}\right\}_{n=1,2,3,\dots}$$
 (b) $\left\{\frac{n+1}{7n-4}\right\}_{n=1}^{\infty}$ (c) $\left\{\frac{1}{n+5}\right\}_{n=1}^{\infty}$

iv.) Use your work above to quickly give a lower bound (a number m) and an upper bound (a number M) for each of the following sequences.

(a)
$$\left\{\frac{n-1}{7n+4}\right\}_{n=1,2,3...}$$
 (b) $\left\{\frac{n+1}{7n-4}\right\}_{n=1}^{\infty}$ (c) $\left\{\frac{1}{n+5}\right\}_{n=1}^{\infty}$

- 4. (Sec 11.1 monotone convergence theorem) Recall that lower and upper bounds are not unique!
 - (a) True or false? The sequence

$$\left\{\frac{3n-6}{6n+2}\right\}_{n=1}^{\infty}$$

is bounded. Give an upper bound and a lower bound (if true) or justify (if false).

(Answer: True. The sequence is bounded by $-\frac{3}{8}$ and $\frac{1}{2}$ WebAssign Sec 11.1 no. 7, or sketch the corresponding function)

(b) True or false? The sequence

$$\left\{5ne^{-6n}\right\}_{n=1}^{\infty}$$

is bounded. Give an upper bound and a lower bound (if true) or justify (if false).

(Answer: True. The least upper bound is $\frac{5}{e^6}$ and the greatest lower bound is 0. See WebAssign no. 8, or compute the derivative of the corresponding function to show that this sequence is decreasing.)

- (c) True or false? Every bounded sequence is convergent. Justify (if T) or give a counterexample (if F).
- (d) True or false? There exists an increasing sequence that converges to 10. Provide an example (if T) or justify (if F).
- (e) True or false? There exists an increasing and bounded sequence that does not converge. Provide an example (if T) or justify (if F).
- (f) True or false? There is a non-monotonic sequence that converges to 4. Provide an example (if T) or justify (if F).
- 5. (From WebAssign homework Sec 11.2)
 - (a) Suppose you're given a mystery sequence whose n-th partial sum is known to be $S_n = 4 7(3/10)^n$. Calculate the sum of the series $\sum_{n=1}^{\infty} a_n$. (Answer: 4.)
 - (b) You'll be given, $\left| \text{if } |r| < 1$, we have $\overline{\sum_{n=1}^{\infty} r^{n-1}} = \frac{1}{1-r} \right|$. Find ratio values x such that the correspond-

ing geometric series converge. Then compute the sum of the series (assuming x satisfies the condition).

- 1. $\sum_{n=1}^{\infty} (-4)^n x^n$. 2. $\sum_{n=1}^{\infty} (-4)^{n-1} x^n$. 3. $\sum_{n=1}^{\infty} 5(-4)^{n-1} x^n$. 4. $\sum_{n=0}^{\infty} 4^{n-1} x^n$.

Answer: For each, the interval is $\left(-\frac{1}{4}, \frac{1}{4}\right)$. Don't forget to compute the sum of the series! Check your answers with WolframAlpha.