\qquad

9.3 Separable Equations

Separable equation. A first-order differential equation is called separable if it has the form $\frac{d y}{d x}=g(x) f(y)$. The right side is a product of separate functions of x and of y.

Example. Are any of
a.) $\frac{d y}{d x}+y=e^{x}$,
b.) $\frac{d y}{d x}=x+y$,
c.) $\left(y^{2}+x y^{2}\right) \frac{d y}{d x}=1$,
d.) $\frac{d y}{d x}=2 y\left(1-\frac{y}{10000}\right)$
separable differential equations? Why?

Practice Sec 9.3 Examples 1,2,3,4 in Stewart textbook.

Orthogonal trajectory. An orthogonal trajectory of a family of curves is a curve intersecting each curve of the family at right angles (orthogonally).

Recall that a line perpendicular to a line with slope m has slope \qquad . So, if a family
of curves has derivative $\frac{d y}{d x}=m(x, y)$, then the derivative of an orthogonal trajectory to that family of curves is $\frac{d y}{d x}=$ \qquad

Applications.

Example. Consider the family of circles centered at the origin with radius K : in Cartesian coordinates, \qquad and, in polar coordinates, \qquad . Find an orthogonal trajectory of this family of curves. Find all the orthogonal trajectories of this family.

HW: Copy from Stewart Sec 9.3 Example 5). The curves $x=k y^{2}$ are a family of parabolas. Find an orthogonal trajectory of this family of curves. Find all the orthogonal trajectories.

Mixing problems. If $y(t)$ denotes the amount of substance in a tank at time t, then its rate of change is $\frac{d y}{d t}=($ rate in $)-($ rate out $)$.

Applications.

Mixing Problem Example 1: A tank contains 1000L of pure water. Brine that contains .005 kg of salt per liter of water enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$. Brine that contains 0.04 kg of salt per liter of water enters the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at a rate of $15 \mathrm{~L} / \mathrm{min}$. How much salt is in the tanks (a) after t minutes, (b) after one hour, and (c) in the long run?

Mixing Problem Example 1: A tank contains 500 L of brine with 15 kg of dissolved salt. Brine having .2 kg of salt per liter of water enters the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and is drained from the tank at $10 \mathrm{~L} / \mathrm{min}$. How much salt is in the tank after t minutes? After 20 min ? In the long run?

Thinking about the problem:

Let $y(t)$ be the amount of salt in the tank at $t \mathrm{~min}$. We need the rate in and rate out of salt in $\mathrm{kg} / \mathrm{min}$. The rate in is the concentration of salt (in kg / L) multiplied by the rate of liquid entering the tank (in $\mathrm{L} / \mathrm{min}$), and the rate out is the concentration of salt multiplied by the rate of liquid leaving the tank. After finding $\frac{d y}{d t}$, we solve for $y(t)$ and $y(20)$.

Doing the problem: Let $y(t)$ be the amount of kg of salt in the tank at t minutes, so $y(0)=15$. The problem also says brine with $.2 \mathrm{~kg} / \mathrm{L}$ of salt enters at a rate of $10 \mathrm{~L} / \mathrm{min}$ and the whole mixture drains from the tank at $10 \mathrm{~L} / \mathrm{min}$. The concentration of salt entering the tank at time t is $.2 \mathrm{~kg} / \mathrm{L}$, so the rate of salt entering the tank at time t is

$$
\text { concentration } \cdot \text { rate of liquid entering the tank }=.2 \frac{\mathrm{~kg}}{\mathrm{~L}} \cdot 10 \frac{\mathrm{~L}}{\min }=2 \frac{\mathrm{~kg}}{\min } .
$$

The concentration of salt leaving the tank at time t is

$$
\frac{\text { amount of salt in tank }}{\text { volume of tank }}=\frac{y(t) \mathrm{kg}}{500 \mathrm{~L}},
$$

so the rate of salt leaving of the tank at time t is

$$
\text { concentration } \cdot \text { rate of liquid leaving the tank }=\frac{y(t) \mathrm{kg}}{500 \mathrm{~L}} \cdot 10 \frac{\mathrm{~L}}{\min }=\frac{y(t)}{50} \frac{\mathrm{~kg}}{\min } .
$$

Therefore, in kg/min,

$$
\frac{d y}{d t}=(\text { rate in })-(\text { rate out })=2-\frac{y(t)}{50}=\frac{100-y(t)}{50}
$$

The differential equation $\frac{d y}{d t}=\frac{100-y}{50}$ is separable:

$$
\frac{d y}{d t}=\frac{100-y}{50} \Longrightarrow \frac{d y}{100-y}=\frac{d t}{50} \Longrightarrow \int \frac{d y}{100-y}=\int \frac{d t}{50} \Longrightarrow-\ln |100-y|=\frac{t}{50}+C
$$

Thus $\ln |100-y|=-t / 50-C$, so raising e to both sides, we get $100-y(t)= \pm e^{-C} e^{-t / 50}$. Setting $t=0$ here, $100-15= \pm e^{-C}$, so $100-y(t)=85 e^{-t / 50}$. Thus $y(t)=100-85 e^{-t / 50}$. This is the number of kilograms of salt in the tank after t minutes. After 20 minutes there is $y(20)=100-85 e^{-20 / 50} \approx 43.02 \mathrm{~kg}$ of salt.

Remark. In the long run, the concentration of salt in the tank must match that of incoming brine $(.2 \mathrm{~kg} / \mathrm{L})$, so the amount of salt in 500 L should tend to $(.2 \mathrm{~kg} / \mathrm{L})(500 \mathrm{~L})=$ 100 kg , which is consistent with $y(t) \rightarrow 100$ as $t \rightarrow \infty$.

Solutions should show all of your work, not just a single final answer.

1. Find the solution of $\frac{d y}{d x}=e^{x} e^{y}$ where $y(0)=1$.
2. Find the general solution of the differential equation $\left(y^{2}+x y^{2}\right) y^{\prime}=1$.
3. Find the orthogonal trajectories of the family of curves $y^{4}=k x^{3}$, where k is constant.
4. (From WebAssign) A vat with 500 gallons of beer contains 4% alcohol (by volume). Beer with 6% alcohol is pumped into the vat at a rate of $5 \mathrm{gal} / \mathrm{min}$ and the mixture is pumped out at the same rate. What is the percentage of alcohol after an hour?
(a) Let $y(t)$ be the amount of alcohol in the vat after t minutes. What is $y(0)$?
(b) What is the rate the alcohol is entering the vat?
(c) What is the rate the alcohol is leaving the vat?
(d) What is $\frac{d y}{d t}$?
(e) Solve the separable equation from (d).
(f) Find the percentage of alcohol after one hour (what should t be?).
5. A tank contains 1000 L of pure water. Brine that contains .5 kg of salt per liter of water enters the tank at a rate of $20 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at a rate of $20 \mathrm{~L} / \mathrm{min}$. How many kg of salt are in the tank after t minutes? After one hour (round to one digit after the decimal point)?
6. True/False (with justification)

The differential equation $\frac{d y}{d x}=y x+y$ is separable.
The differential equation $\frac{d y}{d x} y=e^{4 x}$ is separable.
The differential equation $\frac{d y}{d x}+e^{y}=e^{x}$ is separable.
The differential equation $\frac{d y}{d x} e^{5 y}=e^{x}$ is separable.

