\qquad

9.1 Modeling with Differential Equations

Differential equations. An equation containing an unknown function and some of its derivatives is a differential equation. Examples are

$$
\frac{d y}{d x}=4 x \quad \text { and } \quad y^{\prime \prime}(x)+x^{3} y^{\prime}(x)=x y(x) .
$$

The order of a differential equation is the order of the highest-order derivative in the equation. For example, $\frac{d y}{d x}=4 x$ is a first-order differential equation, while $y^{\prime \prime}(x)+x^{3} y^{\prime}(x)=x y(x)$ is a second-order differential equation.

Motivation. A mathematical model of a real-world problem (formulated through reasoning or based on data) often takes the form of a differential equation.

Models for population growth.
Variables:
i. Assuming ideal conditions, population grows at a rate proportional to the population size.
ii. Assume limited resources.

Logistic differential equation

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)
$$

Example:

(i) Check whether every member of the family of functions

$$
y=\frac{1+c e^{t}}{1-c e^{t}}
$$

is a solution to the differential equation $y^{\prime}=\frac{1}{2}\left(y^{2}-1\right)$.
(ii) Find a solution to the differential equation $y^{\prime}=\frac{1}{2}\left(y^{2}-1\right)$ that satisfies the initial condition $y(0)=2$.

Example: Which of the functions below satisfy the differential equation $y^{\prime \prime}+y=\sin x$?
(a) $y=\sin x$
(b) $y=\cos x$
(c) $y=\frac{1}{2} x \sin x$
(d) $y=-\frac{1}{2} x \cos x$

Thinking about the problem:
First we will find y^{\prime} and then $y^{\prime \prime}$ for each of the functions and then compute $y^{\prime \prime}+y$ in each case to see if we get $\sin x$.

Doing the problem:
(a) $y=\sin x \Longrightarrow y^{\prime \prime}=-\sin x$
$\Longrightarrow y^{\prime \prime}+y=0$,
(b) $y=\cos x \Longrightarrow y^{\prime \prime}=-\cos x$
$\Longrightarrow y^{\prime \prime}+y=0$,
(c) $y=\frac{1}{2} x \sin x \Longrightarrow y^{\prime \prime}=\cos x-\frac{1}{2} x \sin x$
$\Longrightarrow y^{\prime \prime}+y=\cos x$,
(d) $y=-\frac{1}{2} x \cos x \Longrightarrow y^{\prime \prime}=\sin x+\frac{1}{2} x \cos x$ $\Longrightarrow y^{\prime \prime}+y=\sin x$.

The only solution to $y^{\prime \prime}+y=\sin x$ among the four functions here is (d) $y=-\frac{1}{2} x \cos x$.

Solutions should show all of your work, not just a single final answer.

1. We consider the differential equation $\frac{d y}{d t}=1-2 y$. (Here the independent variable is t.)
(a) Find all constant solutions. That is, if $y=K$ for constant K satisfies the differential equation, what does K need to be?
(b) Show every function of the form $y(t)=\frac{1}{2}+C e^{-2 t}$, where C is a constant, is a solution of the differential equation.
(c) If $y(t)$ is a function described by part (b), what can you say about the long-term behavior $\lim _{t \rightarrow \infty} y(t)$?
2. We consider the differential equation $\frac{d y}{d x}=x y$. (Here the independent variable is x.)
(a) Find all constant solutions.
(b) Show every function of the form $y(x)=C e^{x^{2} / 2}$, where C is a constant, is a solution.
(c) For a solution as in part (b), describe C as a value of $y(x)$.
3. True/False (give justification/ counterexample)

Every differential equation has a constant solution.

