Task 0 fill in the blanks (Copy from Appendix D page A24-A31, Sec 3.3, Sec 7.2)

Trigonometric Identity (Copy from Appendix D A28-A29)				
со	$s^2 x + \sin^2 x = \underline{\qquad}$			
L				
$\cos^2 x =$		$\sin^2 x =$		
$\sec^2 x =$		$\tan^2 x =$		
Double Angle Formula (Cop	y from Sec 7.2 pg	480 or Appendix D pg A29)		
$\cos 2x =$	=	=	·	
Deduce the Half Angle Form	ulas (Apdx. D):	$\sin^2 x =$		
$\cos^2 x =$				
Derivatives (Copy from Sec 3	3.3 pg 193)			
7		,		
$\frac{d}{dx}(\sin x) = \underline{\qquad}$		$\frac{d}{dx}(\cos x) = \underline{\qquad}$	·	
$\frac{d}{d}(\tan x) =$		$\frac{d}{d}(\sec x) =$		
$dx^{(\ldots, x)}$	·	$dx^{(been)}$	·	
Useful Anti-Derivatives (Cop	by from Sec 7.2 pg	<u>5</u> 482-483)		
$\int \tan x dx =$		$\int \sec x dx =$		
J	-	J	-	

Task 1 (three parts): Review u-substitution and chain rule/ quotient rule

Review: Evaluate the following indefinite integral using u-substitution with u=cos x.

Anti-Derivative		
ſ	$\tan x dx = \underline{\qquad} = \underline{\qquad}$	·

1a. Check your work or learn how to do this by looking at the book's solution: Sec 5.5 Example 6, pg 415-416. Write your work here (required).

Knowing the derivatives for cosine and sine functions, use chain rule/ quotient rule to compute:

Derivative	$\frac{d}{dx}(\tan x) =$	
------------	--------------------------	------

1b. Check your work or learn how to do this by looking at the book's solution: Sec 3.3 pg 193. **Write your computation work here (required).**

Given the derivatives for cosine and sine functions, use chain rule or quotient rule to compute

Derivative	$\frac{d}{dx}(\sec x) = \underline{\qquad}.$	
------------	--	--

1c. Check your answer or learn how to do it by watching this Khan academy video. (Note: the video uses quotient rule but you may find the chain rule to be less work in this case): <u>https://www.khanacademy.org/math/ap-calculus-ab/ab-derivative-rules/ab-diff-trig-func/v/derivatives-of-secx-and-cscx **Write your work here (required).**</u>

Section 7.2 Part 2

<u>Integrating Products of tangent and secant (power of tangent is odd or power of secant is</u> <u>even) where you can use u-substitution</u>

Let *m* and *n* be integers. Evaluate $\int \tan^m x \sec^n x \, dx$.

Strategy: The power of tangent is odd (see Example 6)

m = 2k + 1 > 0

$$\int \tan^m x \sec^n x \, dx = \int \left(\tan^2 x\right)^k \sec^{n-1} x \sec x \tan x \, dx$$
$$= \int \left(\sec^2 x - 1\right)^k \sec^{n-1} x \sec x \tan x \, dx$$
$$= \int \left(u^2 - 1\right)^k u^{n-1} \, du$$

Strategy: The power of secant is even (see Example 5)

n = 2k > 0

$$\int \tan^{m} x \sec^{n} x \, dx = \int \tan^{m} x \left(\sec^{2} x\right)^{k-1} \sec^{2} x \, dx$$
$$= \int \tan^{m} x \left(1 + \tan^{2} x\right)^{k-1} \sec^{2} x \, dx$$
$$= \int u^{m} \left(1 + u^{2}\right)^{k-1} \, du$$

Examples.

Strategy: The power of tangent is odd (Example 6)

<u>**Task 2.**</u> Evaluate the indefinite integral given in Sec 7.2, Example 6, pg 482. Write below both the problem and your solution.

Strategy: The power of secant is even (Example 5)

<u>**Task 3.**</u> Evaluate the indefinite integral given in Sec 7.2, Example 5, pg 481. Write below both the problem and your solution.

Note: If the power of tangent is odd and the power of secant is even, either strategy can be used. But what if neither is true? Will learn a strategy for this later.

Task 4: Evaluate the following using u-substitution. Copy book's solution Sec 7.2 pg 483.

Write your work here (required):