11.9: Representations of Functions as Power Series

Voula Collins

University of Connecticut

Spring 2018

POWER SERIES

We've seen examples of convergent power series—but can we write an explicit function that is represented by a power series?

Consider
$$\sum_{n=0}^{\infty} x^n =$$

This is geometric with ratio r =

The power series converges if

so the interval of convergence is

When it converges, the series converges to

EXTENDING THIS IDEA

So for |x| < 1, we can express $\frac{1}{1-x}$ as a power series:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$

Can we express $\frac{1}{1+x}$ as a power series? What values of x work?

3 / 1

EXAMPLE

Find a power series representation for $f(x) = \frac{1}{3-x}$ and find its interval of convergence.

Question: What is the center? A. 0 B. 1 C. 2 D. 3 E. 4 Question: What is the radius of convergence? A. 1 B. 3 C. 1/3

EXAMPLE

Find a power series representation for $f(x) = \frac{5}{1+4x^2}$ and find its interval of convergence.

Question: What is the radius of convergence?

A. 1 B. 2 C. 1/2 D. 4 E. 1/4

5/1

EXAMPLE

Find a power series representation for $f(x) = \frac{2x^4}{2-3x}$ and find its interval of convergence.

EXAMPLE

What happens if we find an antiderivative for the equation below?

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$

7/1

DIFFERENTIATION AND INTEGRATION

As it turns out, we can use both differentiation and integration to express other kinds of functions as powers series:

Theorem: If the power series $\sum c_n(x-a)^n$ has radius of convergence R > 0, then the function f defined by

$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots = \sum_{n=0}^{\infty} c_n(x-a)^n$$

is differentiable (and therefore continuous) on the interval (a-R,a+R) and

(I)
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \dots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$

(II)
$$\int f(x) dx = C + c_0(x - a) + c_1 \frac{(x - a)^2}{2} + c_2 \frac{(x - a)^3}{3} + \dots = C + \sum_{n=0}^{\infty} c_n \frac{(x - a)^{n+1}}{n+1}$$

The radii of convergence for both of these power series is R.

EXAMPLE

Find a power series representation for $f(x) = \frac{1}{(5+x)^2}$ and find its interval of convergence.

9 / 1

EXAMPLE

Use a power series to approximate $\int_0^{0.3} \ln(1+t^4) dt$ to six decimal places.

More examples and practice

Find a power series representation for $f(x) = \frac{3}{8+7x}$ and find its interval of convergence.

Find $\int \frac{x^2}{1+8x^3} dx$ as a power series, and find its radius of convergence.

Find a power series representation for $f(x) = \frac{x}{(3+x)^2}$ and find its radius of convergence.

Find a power series representation for $f(x) = \frac{x}{(3+x)^3}$ and find its radius of convergence.