11.9: Representations of Functions as Power Series

Voula Collins

University of Connecticut

Spring 2018

Power Series

We've seen examples of convergent power series-but can we write an explicit function that is represented by a power series?

Consider $\sum_{n=0}^{\infty} x^{n}=$
This is geometric with ratio $r=$

The power series converges if
so the interval of convergence is

When it converges, the series converges to

ExTENDING THIS IDEA

So for $|x|<1$, we can express $\frac{1}{1-x}$ as a power series:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

Can we express $\frac{1}{1+x}$ as a power series? What values of x work?

EXAMPLE

Find a power series representation for $f(x)=\frac{1}{3-x}$ and find its interval of convergence.

Question: What is the center?
$\begin{array}{lllll}\text { A. } 0 & \text { B. } 1 & \text { C. } 2 & \text { D. } 3 & \text { E. } 4\end{array}$ Question: What is the radius of convergence? \quad A. $1 \quad$ B. $3 \quad$ C. $1 / 3$

EXAMPLE

Find a power series representation for $f(x)=\frac{5}{1+4 x^{2}}$ and find its interval of convergence.

Question: What is the radius of convergence?
A. 1
B. 2
C. $1 / 2$
D. 4
E. $1 / 4$
$5 / 1$

EXAMPLE

Find a power series representation for $f(x)=\frac{2 x^{4}}{2-3 x}$ and find its interval of
convergence. convergence.

EXAMPLE

What happens if we find an antiderivative for the equation below?

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

Differentiation and Integration

As it turns out, we can use both differentiation and integration to express other kinds of functions as powers series:
Theorem: If the power series $\sum c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then the function f defined by

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

is differentiable (and therefore continuous) on the interval $(a-R, a+R)$ and
(I) $f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}$
(II) $\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\cdots=$

$$
C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
$$

The radii of convergence for both of these power series is R.

Example

Find a power series representation for $f(x)=\frac{1}{(5+x)^{2}}$ and find its interval of convergence.

Use a power series to approximate $\int_{0}^{0.3} \ln \left(1+t^{4}\right) d t$ to six decimal places.

Find a power series representation for $f(x)=\frac{3}{8+7 x}$ and find its interval of convergence.

Find $\int \frac{x^{2}}{1+8 x^{3}} d x$ as a power series, and find its radius of convergence.
Find a power series representation for $f(x)=\frac{x}{(3+x)^{2}}$ and find its radius of convergence.

Find a power series representation for $f(x)=\frac{x}{(3+x)^{3}}$ and find its radius of convergence.

