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A power series defines a function on its interval of convergence. 
Task 1. Read pages 752-753. Write a brief summary (1-2 sentences). 
 
 
Combining Power Series 
Theorem  Combining Power Series 
Suppose the power series  and  converge absolutely to  and , 
respectively, on an interval .  

1.  Sum and Difference 
The power series  converges absolutely to  on . 
 

2.  Multiplication by a power 
The power series  converges absolutely to  on ,  
provided  is an integer such that  for all terms of the series. 
 

3.  Composition 
If , where  is a positive integer and  is a real number, the power series 

 converges absolutely to the composite function   

for all  such that  is in . 

 
Task 2 (Copy Sec 11.9, Example 1 from page 753).  
Try to specify where the above Theorem (part 3) is used.  What are f ( t ) and h ( x ) ?   
Give the interval of convergence of the series using above Theorem (part 3). 
 
 
 
 
 
 
Task 3 (Copy Sec 11.9 Example 2, pg 753): 
Use the geometric series 

 for  

to find a power series representation for  .   

Try to specify where the above Theorem (part 3) is used.  What are f ( t ) and h ( x ) ? 
Give the interval of convergence of the new series by applying the above Theorem.  
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Differentiating and Integrating Power Series 
 
Theorem  Differentiating and Integrating Power Series (Sec 11.9, pg 754) 
 
Let the function  be defined by the power series  on  
its interval of convergence . THEN:  
 

1.    is a continuous function on . 
 

2.  The power series may be differentiated term by term. 
 

. 

 
The resulting power series converges to  at all points in the interior of . 
 

3.  The power series may be integrated term by term. 
 

 where  is a constant. 

 
The resulting power series converges to  at all points in the interior of . 

 
Task 4 (Copy the book’s solution for Sec 11.9, Example 5, pg 755): 
Apply the first theorem and differentiate the geometric series 

 for  

to find a series representation for  and give the interval of convergence of the new series. 
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Task 4. (Follow Sec 11.9, Example 8a, pg 756.) 

Consider the geometric series  for . 

i. Find a power series representation for  . (See similar Example 8a, top half). 

Try to specify where the first Theorem (part 3) is used.  What are f ( t ) and h ( x ) ? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ii. Evaluate  as a power series and give the radius of convergence of the new series. 

(See the similar solution of Example 8a, bottom half). 
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iii. Evaluate  as a series. (Follow the top-half similar solution of Example 8b). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
iv.    Use the Alternating Series Remainder Theorem to find a bound on the error in 

approximating part (c) by adding up the first  terms of the series.  
(Follow the bottom-half solution of Example 8b, pg 757. Use technology/ calculator).  
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