Definition: Growth Rates of Functions (as x approaches infinity)

Suppose f and g are functions with $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$. Then

- f grows faster than g as $x \to \infty$ if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$.
- f and g have comparable growth rates if $\lim_{x\to\infty}\frac{f(x)}{g(x)}=M$, where M is a positive number.

Theorem: Asymptotic Hierarchy

Let $f \ll g$ mean that g grows faster than f as $x \to \infty$. Then

$$c \ll (\ln x)^q \ll x^p \ll a^x \ll x! \ll x^x$$

$$c \ll (\ln n)^q \ll n^p \ll a^n \ll n! \ll n^n$$

Example:

Show that $\frac{x^p}{\ln(x)} \to \infty$ as $x \to \infty$:

$$\lim_{x \to \infty} \frac{x^p}{\ln x} = \lim_{x \to \infty}$$

$$= \lim_{x \to \infty}$$

Example:

Show that r^x (for r > 1) grows faster than x^p :

$$\lim_{x \to \infty} = \lim_{x \to \infty}$$

$$= \lim_{x \to \infty}$$

$$\frac{d}{dx}(4^x) = \boxed{?}$$

$$c \ll (\ln n)^q \ll n^p \ll n^n \ll n! \ll n^n$$

$$\lim_{n \to \infty} \sqrt[n]{c} \qquad \lim_{n \to \infty} \sqrt[n]{(\ln n)^q} \qquad \lim_{n \to \infty} \sqrt[n]{n^p} \qquad \lim_{n \to \infty} \sqrt[n]{a^n} \qquad \lim_{n \to \infty} \sqrt[n]{n!} \qquad \lim_{n \to \infty} \sqrt[n]{n^n}$$

$$\lim_{n \to \infty} c^{\frac{1}{n}} =$$

$$\lim_{n \to \infty} (\ln n)^{\frac{q}{n}} = \boxed{?}$$
Let $y = \ln y =$

$$\lim_{n \to \infty} (n)^{\frac{p}{n}} = \boxed{?}$$
Let $y = \ln y =$

$$\lim_{n\to\infty} (n!)^{\frac{1}{n}} = \boxed{?}$$
Let $y = (n!)^{\frac{1}{n}}$

$$\ln(y) = \frac{1}{n} \ln(n!)$$

$$= \frac{1}{n} \ln\left((1) \cdot (2) \cdot (3) \cdot \dots (n-2) \cdot (n-1) \cdot (n)\right) \quad \text{by definition of factorial}$$

$$= \frac{1}{n} \left(\ln(1) + \ln(2) + \ln(3) + \dots + \ln(n-2) + \ln(n-1) + \ln(n)\right) \quad \text{by log laws}$$

$$\geq \frac{1}{n} \int_{1}^{n} \ln x \, dx \quad \text{Why? Will cover in Sec 7.8: improper integrals and Sec 11.3: Estimates of Sum.}$$

To recap, the above sequence of equality and inequality symbols shows us that

Since
$$\lim_{n\to\infty} \frac{1}{n} \left(\int_1^n \ln x \, dx \right) = \lim_{n\to\infty} \frac{1}{n} \left(x \ln(x) \Big|_{x=1}^{x=n} - \int_1^n \, dx \right)$$
 using integration by parts (will be covered in Calc II)
$$= \lim_{n\to\infty} \frac{1}{n} (n \ln(n) - n + 1)$$

$$= \lim_{n\to\infty}$$

$$= \underline{\qquad ,}$$

we can conclude that $\lim_{n\to\infty}\ln(y)=\infty$ as well. Therefore

$$\lim_{n\to\infty} (n!)^{\frac{1}{n}} = \lim_{n\to\infty} e^{\ln(y)}$$

=

USING GROWTH RATES TO DETERMINE WHETHER A SERIES CONVERGES

Refer to the "growth rates" notes.

1. Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)}$$

(a) The denominator of the term is $\ln(n+1)$. Consider the function $\ln(x+1)$. Fill in the blank with \ll or \gg :

$$\ln(x+1)$$
 x

(b) This means that

$$\lim_{x \to \infty} \underline{\hspace{1cm}} = \infty$$

(See page 1 of this "growth rates" notes)

(c) Fill in the blank with \leq or \geq :

$$ln(n+1)$$
 n for large enough n .

(d) Fill in the blank with \leq or \geq :

$$\frac{1}{\ln(n+1)}$$
 — for sufficiently large n .

- (e) State the test which you would use to determine whether the series $\sum \frac{1}{n}$ converges or diverges.
- (f) State whether the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges or diverges.
- (g) State the statement of the limit comparison test.
- (h) Compute $\lim_{n\to\infty} \frac{n}{\ln(n+1)}$. Note that the answer is given in part (b).
- (i) By the limit comparison test and part (f), the series

$$\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)} \quad ---$$

2. Let p be any positive integer (say, p = 5) Let a be a number larger than 1 (say, $a = \frac{3}{2}$). Consider the series

$$\sum_{n=1}^{\infty} \frac{n^p}{a^n} = \sum_{n=1}^{\infty} \frac{n^5 2^n}{3^n}.$$

After simplifying, we realize that the term of the series is

$$\frac{n^5}{(\frac{3}{2})^n}.$$

- (a) The series $\sum_{n=1}^{\infty} n^5$ _____ by the _____ test.
- (b) The series $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$ _____ by the _____ test.
- (c) Let's figure out: is the numerator/denominator more dominant than the other?
- (d) The denominator of the term is $\left(\frac{3}{2}\right)^n$. Consider the function $\left(\frac{3}{2}\right)^x$. The numerator of the term is n^5 . Consider the function x^5 . Fill in the blank with \ll or \gg :

$$x^5$$
 $\left(\frac{3}{2}\right)^x$.

(e) This means that (check the "growth rates" notes)

$$\lim_{x \to \infty} \underline{\hspace{1cm}} = \infty$$
. This also means $\lim_{x \to \infty} \underline{\hspace{1cm}} = 0$.

- (f) Part (e) means that ______ is more dominant than _____
- (g) Quiz your classmate on the statement of the ratio test until it's memorized.
- (h) (Recall that when you see *only* polynomial-like terms, like $n^{p_1} + n^{p_2}$, the ratio test *will be inconclusive* (*Why?*). But, if you see powers like a^n it's OK to use the ratio test. Let's apply the ratio test to $\sum a_n = \sum \frac{n^5 2^n}{3^n}$. Compute

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^5}{\left(\frac{3}{2}\right)^{(n+1)}} \frac{\left(\frac{3}{2}\right)^n}{n^5}$$

(i) By the ratio test, the series

$$\sum_{n=1}^{\infty} \frac{n^5 2^n}{3^n} \quad \dots$$

3. Consider the series

$$\sum_{n=1}^{\infty} a_n$$

for

$$a_n = \frac{n^n}{7^n(n)!}$$
 and $a_n = \frac{n^n}{2^n(n)!}$

(a) Look at the term of the series.

The numerator, n^n looks like the function _____.

The denominator, $7^n(n)!$ looks like the product of functions _____ and

- (b) Which is more dominant for large n? The numerator or the denominator? Can you tell just by looking at the "growth rates" notes?
- (c) I told you that the ratio test $will\ probably\ work$ if you see exponents like r^n or a factorial. Compute

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

for

$$a_n = \frac{n^n}{7^n \ n!}$$
 and $a_n = \frac{n^n}{2^n \ n!}$

(Recall that $(1 + \frac{1}{n})^n \to e$ as $n \to \infty$)

(d) By the ratio test, the series

$$\sum \frac{n^n}{7^n \ n!}$$
 and $\sum \frac{n^n}{2^n \ n!}$