Definition: Growth Rates of Functions (as x approaches infinity)

Suppose f and g are functions with $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty$. Then

- f grows faster than g as $x \rightarrow \infty$ if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty$.
- f and g have comparable growth rates if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=M$, where M is a positive number.

Theorem: Asymptotic Hierarchy

Let $f \ll g$ mean that g grows faster than f as $x \rightarrow \infty$. Then

$$
c \quad \ll(\ln n)^{q} \lll n^{p} \lll a^{n} \lll n!\lll n^{n}
$$

Example:
Show that $\frac{x^{p}}{\ln (x)} \rightarrow \infty$ as $x \rightarrow \infty$:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{p}}{\ln x} & =\lim _{x \rightarrow \infty} \\
& =\lim _{x \rightarrow \infty}
\end{aligned}
$$

$$
=
$$

Example:
Show that r^{x} (for $r>1$) grows faster than x^{p} :

$$
\begin{aligned}
\lim _{x \rightarrow \infty} & =\lim _{x \rightarrow \infty} \\
& =\lim _{x \rightarrow \infty} \\
& =
\end{aligned}
$$

Review:

$$
\overline{\frac{d}{d x}\left(4^{x}\right)}=?
$$

$c \quad \ll(\ln n)^{q} \ll n^{p} \lll a^{n} \lll n!\lll n^{n}$

$$
\lim _{n \rightarrow \infty} \sqrt[n]{c} \quad \lim _{n \rightarrow \infty} \sqrt[n]{(\ln n)^{q}} \quad \lim _{n \rightarrow \infty} \sqrt[n]{n^{p}} \quad \lim _{n \rightarrow \infty} \sqrt[n]{a^{n}} \quad \lim _{n \rightarrow \infty} \sqrt[n]{n!} \quad \lim _{n \rightarrow \infty} \sqrt[n]{n^{n}}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} c^{\frac{1}{n}} & = \\
& =
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty}(\ln n)^{\frac{q}{n}}=?
$$

Let $y=$ $\ln y=$
$\lim _{n \rightarrow \infty}(n)^{\frac{p}{n}}=?$
Let $y=$
$\ln y=$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}(n!)^{\frac{1}{n}} & =? \\
\text { Let } y & =(n!)^{\frac{1}{n}} \\
\ln (y) & =\frac{1}{n} \ln (n!) \\
& =\frac{1}{n} \ln ((1) \cdot(2) \cdot(3) \ldots(n-2) \cdot(n-1) \cdot(n)) \quad \text { by definition of factorial } \\
& =\frac{1}{n}(\ln (1)+\ln (2)+\ln (3)+\cdots+\ln (n-2)+\ln (n-1)+\ln (n)) \quad \text { by log laws } \\
& \geq \frac{1}{n} \int_{1}^{n} \ln x d x \quad \text { Why? Will cover in Sec } 7.8: \text { improper integrals and Sec 11.3: Estimates of Sum. }
\end{aligned}
$$

To recap, the above sequence of equality and inequality symbols shows us that
\qquad

Since $\lim _{n \rightarrow \infty} \frac{1}{n}\left(\int_{1}^{n} \ln x d x\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\left.x \ln (x)\right|_{x=1} ^{x=n}-\int_{1}^{n} d x\right) \quad$ using integration by parts (will be covered in Calc II)

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{1}{n}(n \ln (n)-n+1) \\
& =\lim _{n \rightarrow \infty} \\
& =
\end{aligned}
$$

we can conclude that $\lim _{n \rightarrow \infty} \ln (y)=\infty$ as well. Therefore

$$
\lim _{n \rightarrow \infty}(n!)^{\frac{1}{n}}=\lim _{n \rightarrow \infty} e^{\ln (y)}
$$

$$
=
$$

\qquad

USING GROWTH RATES TO DETERMINE WHETHER A SERIES CONVERGES
Refer to the "growth rates" notes.

1. Consider the series

$$
\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)}
$$

(a) The denominator of the term is $\ln (n+1)$. Consider the function $\ln (x+1)$. Fill in the blank with \ll or \gg :

$$
\ln (x+1) \quad \quad x
$$

(b) This means that

$$
\lim _{x \rightarrow \infty}=\infty
$$

(See page 1 of this "growth rates" notes)
(c) Fill in the blank with \leq or \geq :

$$
\ln (n+1) \quad n \quad \text { for large enough } n .
$$

(d) Fill in the blank with \leq or \geq :

$$
\frac{1}{\ln (n+1)} \quad-\quad \frac{1}{n} \quad \text { for sufficiently large } n
$$

(e) State the test which you would use to determine whether the series $\sum \frac{1}{n}$ converges or diverges.
(f) State whether the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges or diverges.
(g) State the statement of the limit comparison test.
(h) Compute $\lim _{n \rightarrow \infty} \frac{n}{\ln (n+1)}$. Note that the answer is given in part $\sqrt{\mathrm{b}}$.
(i) By the limit comparison test and part ($£$), the series

$$
\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)}
$$

2. Let p be any positive integer (say, $p=5$) Let a be a number larger than 1 (say, $a=\frac{3}{2}$). Consider the series

$$
\sum_{n=1}^{\infty} \frac{n^{p}}{a^{n}}=\sum_{n=1}^{\infty} \frac{n^{5} 2^{n}}{3^{n}}
$$

After simplifying, we realize that the term of the series is

$$
\frac{n^{5}}{\left(\frac{3}{2}\right)^{n}}
$$

(a) The series $\sum_{n=1}^{\infty} n^{5}$ \qquad by the \qquad test.
(b) The series $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$ \qquad by the \qquad test.
(c) Let's figure out: is the numerator/ denominator more dominant than the other?
(d) The denominator of the term is $\left(\frac{3}{2}\right)^{n}$. Consider the function $\left(\frac{3}{2}\right)^{x}$.

The numerator of the term is n^{5}. Consider the function x^{5}.
Fill in the blank with \ll or \gg :

$$
x^{5} \quad\left(\frac{3}{2}\right)^{x} .
$$

(e) This means that (check the "growth rates" notes)

$$
\lim _{x \rightarrow \infty} \ldots \infty . \text { This also means } \lim _{x \rightarrow \infty} \ldots=0
$$

(f) Part (e) means that \qquad is more dominant than \qquad .
(g) Quiz your classmate on the statement of the ratio test until it's memorized.
(h) (Recall that when you see only polynomial-like terms, like $n^{p_{1}}+n^{p_{2}}$, the ratio test will be inconclusive (Why?). But, if you see powers like a^{n} it's OK to use the ratio test. Let's apply the ratio test to $\sum a_{n}=\sum \frac{n^{5} 2^{n}}{3^{n}}$. Compute

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{(n+1)^{5}}{\left(\frac{3}{2}\right)^{(n+1)}} \frac{\left(\frac{3}{2}\right)^{n}}{n^{5}} \\
& =
\end{aligned}
$$

(i) By the ratio test, the series

$$
\sum_{n=1}^{\infty} \frac{n^{5} 2^{n}}{3^{n}}
$$

3. Consider the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

for

$$
a_{n}=\frac{n^{n}}{7^{n}(n)!} \quad \text { and } \quad a_{n}=\frac{n^{n}}{2^{n}(n)!}
$$

(a) Look at the term of the series.

The numerator, n^{n} looks like the function \qquad .

The denominator, $7^{n}(n)$! looks like the product of functions \qquad and \qquad .
(b) Which is more dominant for large n ? The numerator or the denominator? Can you tell just by looking at the "growth rates" notes?
(c) I told you that the ratio test will probably work if you see exponents like r^{n} or a factorial. Compute

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

for

$$
a_{n}=\frac{n^{n}}{7^{n} n!} \quad \text { and } \quad a_{n}=\frac{n^{n}}{2^{n} n!}
$$

(Recall that $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ as $\left.n \rightarrow \infty\right)$
(d) By the ratio test, the series

$$
\sum \frac{n^{n}}{7^{n} n!} \longrightarrow \quad \text { and } \quad \sum \frac{n^{n}}{2^{n} n!}
$$

\qquad

