Remainders in Alternating Series (pg 735)

Theorem Alternating Series Estimation Theorem
Let $R_{n}=S-S_{n}$ be the remainder in approximating the value of a convergent alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ by the sum of its first n terms. Then

$$
\left|R_{n}\right| \leq b_{n+1} .
$$

In other words, the remainder is less than or equal to the magnitude of the first neglected term.

Example: Consider following convergent alternating series.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\mathrm{L} \quad \ldots \quad=\ln 2 \quad(\text { See Exercise } 36 \mathrm{pg} 737)
$$

a) Is the sum of sandwiched between any two consecutive partial sums?
b) Is it sandwiched between any two (non-consecutive) partial sums? Sketch the picture from Ex. 1 pg 734).
c) How many terms of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ must be summed to be sure that the remainder is less than 10^{-4} ?
d) Find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ correct to 2 decimal places.

Def: A number r is called rational if
Fun Fact: Use the Alternating Series Estimation Theorem to prove that e is irrational.
Fact we'll learn later in Sec 11.10: 1/e =

