\qquad

Estimating the Sum of a Series (pg 723)

We want to find an approximation to a convergent series $\sum a_{n}=S$. Any partial sum S_{n} is an approximation to S since $\lim _{n \rightarrow \infty} S_{n}=S$. But how good is such an approximation?

To find out, we need to estimate the size of the remainder

$$
R_{n}=S-S_{n}=a_{n+1}+a_{n+2}+a_{n+3}+\quad \ldots
$$

The remainder R_{n} is the error made when S_{n} is used as an approximation to S.

Remainder Estimate for the Integral Test (*) copy from pg 723
Suppose $f(k)=a_{k}$, where f is a continuous, positive, decreasing function for $x \geq n$ and $\sum a_{n}$ is convergent. If $R_{n}=S-S_{n}$, then
\qquad

Carefully read and then copy Example 5 pg 723:
Consider the convergent infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$. Nobody has been able to find the exact sum.

- Example 5 part a: Approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ by using the sum of the first 10 terms. Estimate the error involved in this approximation.
- Example 5 part b: How many terms are required to ensure that the sum is accurate to within 0.0005 ?

If we add S_{n} to each side of the inequalities in the previous result (*),
we get
Copy from Equation 3, page 724.
\qquad
\qquad (**)

Note: $\left({ }^{* *}\right)$ gives a better estimate to the sum of the series than the partial sum S_{n} does.
Read carefully then copy Example 6 (page 724):
Consider the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$. Given $S_{10} \approx 1.197532$, estimate the sum of the series.

Note (again): (**) gives a better estimate to the sum of the series than the partial sum S_{n} does. Summarize the last paragraph on page 724.

