Section 11.2 Part 4

Telescoping Series

Telelscoping Series Example:

Consider the infinite series $\sum_{k=1}^{\infty} \left[\tan^{-1} (k+1) - \tan^{-1} k \right].$

- a. Find a formula for the *n*-th term of the sequence of **partial sums** $\{S_n\}$.
- b. Evaluate $\lim_{n\to\infty} S_n$ to obtain the value of the series or state that the series diverges.

Telescoping Series Example

Consider the infinite series $\sum_{k=1}^{\infty} \left(\sqrt{k+1} - \sqrt{k} \right)$.

- (1) Find a formula for the *n*-th term of the sequence of **partial sums** $\{S_n\}$.
- (2) Evaluate $\lim_{n\to\infty} S_n$ to obtain the value of the series or state that the series diverges.

Telescoping Series Example

Consider the infinite series $\sum_{k=1}^{\infty} \ln\left(\frac{k+1}{k}\right)$.

- a. Find a formula for the *n*-th term of the sequence of **partial sums** $\{S_n\}$.
- b. Evaluate $\lim_{n\to\infty} S_n$ to obtain the value of the series or state that the series diverges.

Partial fraction decomposition: (Copy from Sec 7.4 Example 2, pg 494-495)

Partial fraction decomposition and telescoping Series Example (Copy Sec 11.2 Example 8, pg 712)

Consider the infinite series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$.

- a. Find a formula for the *n*-th term of the sequence of **partial sums** $\{S_n\}$.
- b. Evaluate $\lim_{n\to\infty} S_n$ to obtain the value of the series or state that the series diverges.

Properties of Convergent Series

Theorem (Theorem 8, pg 714)
If
$$\sum a_k$$
 and $\sum b_k$ are convergent series, ...
• then the series $\sum ca_k$ converges and
 $\sum ca_k =$
• then the series $\sum (a_k \pm b_k)$ converges and
 $\sum (a_k \pm b_k) =$
• if M is a positive integer, then $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=M}^{\infty} a_k$ both converge or both diverge.

Note

Whether a series converges does not depend on a finite number of terms added to or removed from the series. However, the value of a convergent series does change if nonzero terms are added or deleted.

<u>Telescoping Series + Geometric Series + Applying Series Laws Example</u>

Determine whether the series $\sum_{n=1}^{\infty} \left[\frac{5}{n(n+1)} - (-1)^n \frac{3}{2^n} \right]$ is convergent or divergent. If it is convergent, find its sum.

Page 3 of 3