Telescoping Series

Telelscoping Series Example:
Consider the infinite series $\sum_{k=1}^{\infty}\left[\tan ^{-1}(k+1)-\tan ^{-1} k\right]$.
a. Find a formula for the n-th term of the sequence of partial sums $\left\{S_{n}\right\}$.
b. Evaluate $\lim _{n \rightarrow \infty} S_{n}$ to obtain the value of the series or state that the series diverges.

Telescoping Series Example
Consider the infinite series $\sum_{k=1}^{\infty}(\sqrt{k+1}-\sqrt{k})$.
(1) Find a formula for the n-th term of the sequence of partial sums $\left\{S_{n}\right\}$.
(2) Evaluate $\lim _{n \rightarrow \infty} S_{n}$ to obtain the value of the series or state that the series diverges.

Telescoping Series Example
Consider the infinite series $\sum_{k=1}^{\infty} \ln \left(\frac{k+1}{k}\right)$.
a. Find a formula for the n-th term of the sequence of partial sums $\left\{S_{n}\right\}$.
b. Evaluate $\lim _{n \rightarrow \infty} S_{n}$ to obtain the value of the series or state that the series diverges.

Partial fraction decomposition: (Copy from Sec 7.4 Example 2, pg 494-495)

Partial fraction decomposition and telescoping Series Example (Copy Sec 11.2 Example 8, pg 712)
Consider the infinite series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$.
a. Find a formula for the n-th term of the sequence of partial sums $\left\{S_{n}\right\}$.
b. Evaluate $\lim _{n \rightarrow \infty} S_{n}$ to obtain the value of the series or state that the series diverges.

Properties of Convergent Series

Theorem (Theorem 8, pg 714)
If $\sum a_{k}$ and $\sum b_{k}$ are convergent series, \ldots

- then the series $\sum c a_{k}$ converges and

$$
\sum c a_{k}=
$$

- then the series $\sum\left(a_{k} \pm b_{k}\right)$ converges and

$$
\sum\left(a_{k} \pm b_{k}\right)=
$$

- if M is a positive integer, then $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=M}^{\infty} a_{k}$ both converge or both diverge.

Note
Whether a series converges does not depend on a finite number of terms added to or removed from the series. However, the value of a convergent series does change if nonzero terms are added or deleted.

Telescoping Series + Geometric Series + Applying Series Laws Example
Determine whether the series $\sum_{n=1}^{\infty}\left[\frac{5}{n(n+1)}-(-1)^{n} \frac{3}{2^{n}}\right]$ is convergent or divergent. If it is convergent, find its sum.

