Instruction: Fill in all blanks and examples.

Proof of Divergence Test

Divergence Test, Theorem 6, pg 713

Suppose the series $\sum_{k=1}^{\infty} a_{k}$ is convergent. Then $\lim _{k \rightarrow \infty} a_{k}=0$.

Proof: Let S_{n} denote $S_{n}:=a_{1}+a_{2}+\cdots+a_{n}$ for any $n=1,2,3, \ldots$
Then $S_{n-1}=$
For example,

S_{5}	$=$	a_{1}	+	a_{2}	+	a_{3}	+	a_{4}	+	a_{5}
S_{4}	$=$	a_{1}	+	a_{2}	+	a_{3}	+	a_{4}		

$S_{5}-S_{4}=$
In general,

$$
\begin{array}{rllllllllllll}
S_{n} & = & a_{1} & + & a_{2} & + & a_{3} & + & \ldots & + & a_{n-1} & + & a_{n} \\
S_{n-1} & = & a_{1} & + & a_{2} & + & a_{3} & + & \ldots & + & a_{n-1} &
\end{array}
$$

$$
S_{n}-S_{n-1}=
$$

The above is an explanation that, in general,

$$
\begin{equation*}
a_{n}= \tag{1}
\end{equation*}
$$

\qquad
By assumption, $\sum_{n=1}^{\infty} a_{n}$ is convergent. By definition, \qquad (see Def. 2, bottom of pg 708). That is, for some real number S,

$$
\begin{equation*}
=S \tag{2}
\end{equation*}
$$

Since $n-1 \rightarrow \infty$ as $n \rightarrow \infty$, we also have

$$
\begin{equation*}
=S \tag{3}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty}\left(S_{n}-S_{n-1}\right) & & \text { by (1) } \\
& =\lim _{n \rightarrow \infty} S_{n}-\lim _{n \rightarrow \infty} S_{n-1} & & \text { by Limit Laws for sequences (see pg 697) } \\
& =\Longrightarrow & & \text { by (2) and (3). THE END of Proof }
\end{aligned}
$$

Harmonic Series Theorem, pg 713

The harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$ is divergent/convergent (circle one).
Proof:

