Divergence Test

Task 1: Theorem (copy from Theorem 6, pg 713)
If the series $\sum_{k=1}^{\infty} a_{k}$ is convergent, then $\lim _{k \rightarrow \infty} a_{k}=$ \qquad

What does this theorem say? Recall that with any series $\sum a_{n}$ we associate two sequences:

- the sequence $\left\{a_{n}\right\}$ of its terms and
- the sequence $\left\{S_{n}\right\}$ of its partial sums.

If $\sum{ }^{\bullet} a_{n}$ is convergent to S, then

$$
\lim _{n \rightarrow \infty} S_{n}=\quad \text { and } \lim _{n \rightarrow \infty} a_{n}=
$$

\qquad
Task 2: Fill in the two blank spaces. Hint 1: see Theorem 6. Hint 2: Copy from NOTE 1, bottom of pg 713.

Proof of Theorem 6:
Task 3: Go to pg 713. Take 10-20 minutes to read and copy the proof on a separate piece of paper. Close the textbook and reproduce the same proof below (opening the textbook as needed).

Task 4: What is the definition of contrapositive? (Please google 'contrapositive definition'. An informal, imprecise explanation is OK).
\qquad
The following is the contrapositive of Theorem 6:

Task 5: Test for Divergence/ Divergence Test (copy Theorem 7, pg 713)
If $\lim _{k \rightarrow \infty} a_{k} \neq 0$, then the series $\sum_{k=1}^{\infty} a_{k}$ is \qquad

Task 6: Copy from NOTE 2 on the bottom of pg 713.
If , then the test is inconclusive. The test cannot be used to
determine convergence.

Task 7: Theorem Harmonic Series (an important exampe)
The harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\mathrm{L} \underline{\text { diverges / converges. (Circle one, see Ex 9, pg 713.) }}$

Task 8: Solution of Example 9, copy from pg 713:

Task 9: We have $1 / k \rightarrow$ \qquad as $\mathrm{k} \rightarrow \infty$. (Copy from Note 2 , bottom of pg 713)

Task 10: Copy the instruction and solution for Example 10, pg 714.

Task 11: Example: (Using Example 10 as your guide, solve the following problem.)
Determine whether the series $\sum_{k=1}^{\infty} \frac{k}{2 k+1}$ diverges or state that the test you used is inconclusive.
First step: We have $\mathrm{k} /(2 \mathrm{k}+1) \rightarrow$ \qquad as $\mathrm{k} \rightarrow \infty$.

Second step: The Divergence Test is conclusive/inconclusive.

Task 12: Example (Attempting to use the Divergence Test from Theorem 7):
Determine whether the series $\sum_{k=1}^{\infty} \frac{k}{k^{2}+1}$ diverges or state that the test you used is inconclusive.
First step: We have $\mathrm{k} /\left(\mathrm{k}^{2}+1\right) \rightarrow$ \qquad as $\mathrm{k} \rightarrow \infty$.

Second step: The Divergence Test is conclusive/inconclusive.

Task 13: Write down one or more questions you have related to this reading homework.

