Instruction: Fill in all blanks and examples.

Infinite Series

If we add the terms of a sequence

$$
\left\{a_{k}\right\}_{k=1}^{n},
$$

we get an expression of the form

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

which is called a (finite) series and is also denoted by

$$
\sum_{k=1}^{n} a_{k} .
$$

Does it make sense to talk about the sum of infinitely many terms? Consider the partial sums

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3} \\
& S_{4}=a_{1}+a_{2}+a_{3}+a_{4},
\end{aligned}
$$

and, in general,

$$
S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k} .
$$

If the sequence $\left\{S_{n}\right\}_{n=1}^{\infty}=\left\{S_{1}, S_{2}, S_{3}, \ldots\right\}$ of partial sums has limit L, then we say that the infinite series converges to L and we write

If the sequence $\left\{S_{n}\right\}_{n=1}^{n}$ of partial sums diverges, then we say that the infinite series diverges.

Summary(Notation)

- A sequence converges or diverges?
- A series converges or diverges?

An important family of infinite series is the geometric series.

Recall

- A geometric sequence has the property that each term is obtained by multiplying the previous term by a fixed constant, called the ratio, e.g. \qquad
- Given a geometric sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$, if the ratio is r, then the k-th term can be expressed as $a_{k}=$ \qquad , e.g. \qquad -
- When \qquad , the sequence converges.

Geometric Series

Partial Sum of Geometric Series

Given a geometric sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$, if the ratio is r, then the sum of the first n terms

$$
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+\cdots+a_{1} r^{n-2}+a_{1} r^{n-1}
$$

is \qquad

Why? (Example 2 pg 709)

$$
\begin{array}{rlllllll}
S_{n} & = & a_{1}+ & a_{1} r+ & a_{1} r^{2}+ & a_{1} r^{3}+ & \ldots+ & a_{1} r^{n-2}+ \\
r S_{n} & = & & a_{1} r+ & a_{1} r^{2}+ & a_{1} r^{3}+ & \ldots+ & a_{1} r^{n-1} \\
a_{1} r^{n-2}+ & a_{1} r^{n-1}+ & a_{1} r^{n}
\end{array}
$$

Therefore, $S_{n}-r S_{n}=a_{1}-a_{1} r^{n}$,

$$
\text { hence } S_{n}=a_{1} \frac{1-r^{n}}{1-r} \text { if } r \neq 1
$$

Furthermore, since

Theorem (Geometric Series)

Let r and a be real numbers.
If $|r|<1$, then $\sum_{k=1}^{\infty} a r^{k-1}$
If $|r| \geq 1$, then $\sum_{k=1}^{\infty} a r^{k-1}$
\qquad .
\qquad .

Caution

- The geometric sequence converges if and only if \qquad
- The geometric series converges if and only if \qquad
- Exercise: If $|r|<1$, then $\sum_{k=1}^{\infty} a r^{\mathrm{k}}$ \qquad . Proof:

Recall:

$\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\ldots \quad=\quad$, the area of a 1×1 square.
$\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\ldots=$ \qquad , the area of a \qquad rectangle.

Example:

Evaluate the geometric series $\sum_{k=1}^{\infty} \frac{7^{k}}{4^{k+3}}$ or state that it diverges. (At home, use WolframAlpha).
a.) State the test you would use to decide whether the series converges or diverges.
(Hint: so far, we've only learned one test, see above boxed theorem).
b.) (i) Write out the first 4 (four) terms of $\sum_{k=1}^{\infty} \frac{7^{k}}{4^{k+3}}$.
(ii) Write our the first 4 (four) terms of $\sum_{k=1}^{\infty} a r^{k-1}$.
(iii) Compare terms to find an a and an r so that $\sum_{k=1}^{\infty} \frac{7^{k}}{4^{k+3}}=\sum_{k=1}^{\infty} a r^{k-1}$.

Example:

Evaluate the geometric series $\sum_{k=2}^{\infty} \frac{2^{k}}{3^{k-1}}$ or state that it diverges.
(i) Try a slightly different way to solve this problem.
(ii) Come up with a "reality check/sanity check" to convince yourself that your answer makes sense.

Repeating Decimals

Example:

Write $0.9 \overline{34}=0.93434343434 \ldots$ as a geometric series and express its value as a fraction.
a.) Can you write $.9 \overline{34}=.93434343434 \ldots$ as geometric series?
b.) If $0.0 \overline{34}=0.03434343434 \cdots=\sum_{k=1}^{\infty} a r^{k-1}$, what is a ?
c.) If $0.0 \overline{34}=0.03434343434 \cdots=\sum_{k=1}^{\infty} a r^{k-1}$, what is r ?
d.) Is $|r|<1$?
e.) Use the geometric series found in the previous parts to convert $0.9 \overline{34}=0.93434343434 \ldots$ into a fraction.
f.) Perform a reality check, for example, verify that your fraction is between $\frac{9}{10}$ and 1 .

Example:

Write $2.3 \overline{17}=2.317171717 \ldots$ as a geometric series and express its value as a fraction (a ratio of two integers). Compare your work with Example 6, pg 711.

Exercise: observations (First write as a geometric series then convert to a fraction)

- $0 . \overline{38}$
$1.2 \overline{38}$
- $0.2 \overline{74}$
$1.2 \overline{74}$

See answer key: https://egunawan.github.io/spring18/notes/notes11_2part1.pdf

Answer Key (Do not attempt to memorize these observations!)
1.

$$
\begin{aligned}
0 . \overline{38} & =0.383838 \cdots \\
& =\frac{38}{100}+\frac{38}{100^{2}}+\frac{38}{100^{3}}+\cdots \\
& =\frac{\frac{38}{100}}{1-\frac{1}{100}} \\
& =\frac{38}{99}
\end{aligned}
$$

Observation: put the repeating digits in the numerator and put N nine's in the denominator, where N is the number of repeating digits.
For example, $0 . \overline{123}=\frac{123}{999}$
2.

$$
\begin{aligned}
1 . \overline{38} & =1+0 . \overline{38} \\
& =1+\frac{38}{99} \\
& =\frac{99+38}{99} \\
& =\frac{(100-1)+38}{99} \\
& =\frac{138-1}{99}
\end{aligned}
$$

Observation: put all digits minus nonrepeating digits in the numerator and put N nine's in the denominator, where N is the number of repeating digits.
For example, $3 . \overline{652}=\frac{3652-3}{999}$
3.

$$
\begin{aligned}
0.2 \overline{274} & =0.2+0.0747474 \cdots \\
& =\frac{2}{10}+\frac{74}{1000}+\frac{74}{1000 \times 100}+\frac{74}{1000 \times 100^{2}}+\cdots \\
& =\frac{2}{10}+\frac{\frac{74}{1000}}{1-\frac{1}{100}} \\
& =\frac{2}{10}+\frac{74}{990} \\
& =\frac{2 \times 99+74}{990} \\
& =\frac{2 \times(100-1)+74}{990} \\
& =\frac{274-2}{990}
\end{aligned}
$$

Observation: put all digits minus nonrepeating digits in the numerator and put N nine's and M zero's in the denominator, where N is the number of repeating digits and M is the number of nonrepating digits (not including the integer part).
For example, $0.21 \overline{95}=\frac{2195-21}{9900}$
4.

$$
\begin{aligned}
1.2 \overline{74} & =1+0.2 \overline{74} \\
& =1+\frac{274-2}{990} \\
& =\frac{990+274-2}{990} \\
& =\frac{(1000-10)+274-2}{990} \\
& =\frac{1274-12}{990}
\end{aligned}
$$

Observation: put all digits minus nonrepeating digits in the numerator and put N nine's and M zero's in the denominator, where N is the number of repeating digits and M is the number of nonrepating digits (not including the integer part).
For example, $9.53 \overline{4}=\frac{9534-953}{900}$

