Formal definition

Given a sequence $\left\{a_{n}\right\}$, what does $\lim _{n \rightarrow \infty} a_{n}=2$ mean? Use ϵ and N definition.

Let $\left\{b_{n}\right\}$ be a sequence. What does it mean to write $\lim _{n \rightarrow \infty} b_{n}=\infty$? Use M, N definition.

Warm-up Exercises:

Let $a_{n}=\frac{2 n+4}{5 n}$ for $n=1,2,3, \ldots$. The sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to $2 / 5$.
Let's do a reality check. Let $\epsilon=\frac{1}{10}$. Can you find N so that $\left|a_{n}-\frac{2}{5}\right|<\frac{1}{10}$ whenever $n>N$?
$\underline{\text { Scratch work (for yourself): }}$

Warm-up Exercise:

The sequence $\left\{\frac{5}{n^{2}-8}\right\}_{n=3}^{\infty}$ converges to 0 . Reality check: Choose a (positive) number N such that, if $n>N$, then $\left|\frac{5}{n^{2}-8}\right|<\frac{1}{100}$.
Scratch work (for yourself): \quad Polished answer:

Example:

Let $a_{n}=\frac{2 n+4}{5 n}$ for $n=1,2,3, \ldots$. The sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to $2 / 5$.
To show this, let $\epsilon>0$. Choose N so that $\left|a_{n}-\frac{2}{5}\right|<\epsilon$ whenever $n>N$.

Example:

The sequence $\left\{\frac{5}{n^{2}-8}\right\}_{n=3}^{\infty}$ converges to 0 . Suppose I give you a positive ϵ. (For convenience, assume $\epsilon<1$). Choose a positive number N such that, if $n>N$, then $\left|\frac{5}{n^{2}-8}\right|<\epsilon$.

