Section 11.1 Part 2

Geometric Sequence

Visual

Geometric sequences have the property that each term is obtained by multiplying the previous term by a fixed constant, called the **ratio**.

The sequence $\{r^n\}$ is **convergent** if $-1 < r \le 1$ and **divergent** for all other values of r.

Sequences

Monotonic sequences

Definition

- A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$.
- A sequence $\{a_n\}$ is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$.
- A sequence $\{a_n\}$ is **monotonic** if it is either **increasing** or **decreasing**.

Example:

Show that the sequence $\left\{\frac{n}{n^2+1}\right\}$ is decreasing for n > 1. Solution 1:

Solution 2:

Sequences

Monotonic sequences continued

Definition

- A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$.
- A sequence $\{a_n\}$ is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$.
- A sequence $\{a_n\}$ is **monotonic** if it is either **increasing** or **decreasing**.

Another Example:

Make a prediction. Is the sequence { (n-1)/n } for n = 1, 2, 3, ... decreasing or increasing or neither?

Solution 1 (apply the definition directly):

Scratch work (for yourself):

Polished solution:

Solution 2: Consider the function f(x) = (x-1)/x.

Scratch work (for yourself):

Polished solution:

Section 11.1 Part 2

Bounded sequences

```
Definition
```

- A sequence $\{a_n\}$ is said to be **bounded above** if
- A sequence $\{a_n\}$ is said to be **bounded below** if
- A sequence $\{a_n\}$ is said to be **bounded** if

Example:

What are some upper bounds and lower bounds of these sequences?

$\frac{n}{n^2+1}$	lower bounds:	upper bounds:
<i>n</i> +1)		

```
\{(n-1)/n\} lower bounds: upper bounds:
```

Monotonic Sequence Theorem

If sequence $\{a_n\}$ is bounded and monotonic, then $\{a_n\}$ converges.

Example: The sequences $\left\{\frac{n}{n^2+1}\right\}$ and $\{(n-1)/n\}$ are both monotonic and bounded, so by the monotonic sequence theorem, they are convergent.

Caution

Determine whether each statement is true/false. If false, give a counterexample. If true, explain.

1) If a sequence $\{a_n\}$ is bounded, then $\{a_n\}$ is convergent.

2) If a sequence $\{a_n\}$ is monotonic, then $\{a_n\}$ is convergent.

3) If a sequence $\{a_n\}$ is convergent, then $\{a_n\}$ is bounded.

4) If a sequence $\{a_n\}$ is convergent, then $\{a_n\}$ is monotonic.