Geometric Sequence

Visual

Geometric sequences have the property that each term is obtained by multiplying the previous term by a fixed constant, called the ratio.

The sequence $\left\{r^{n}\right\}$ is convergent if $-1<r \leq 1$ and divergent for all other values of r.

Monotonic sequences

Definition

- A sequence $\left\{a_{n}\right\}$ is called increasing if $a_{n}<a_{n+1}$ for all $n \geq 1$.
- A sequence $\left\{a_{n}\right\}$ is called decreasing if $a_{n}>a_{n+1}$ for all $n \geq 1$.
- A sequence $\left\{a_{n}\right\}$ is monotonic if it is either increasing or decreasing.

Example:
Show that the sequence $\left\{\frac{n}{n^{2}+1}\right\}$ is decreasing for $n>1$.
Solution 1:

Solution 2:

Monotonic sequences continued

Definition

- A sequence $\left\{a_{n}\right\}$ is called increasing if $a_{n}<a_{n+1}$ for all $n \geq 1$.
- A sequence $\left\{a_{n}\right\}$ is called decreasing if $a_{n}>a_{n+1}$ for all $n \geq 1$.
- A sequence $\left\{a_{n}\right\}$ is monotonic if it is either increasing or decreasing.

Another Example:

Make a prediction. Is the sequence $\{(\mathrm{n}-1) / \mathrm{n}\}$ for $\mathrm{n}=1,2,3, \ldots$ decreasing or increasing or neither?

Solution 1 (apply the definition directly):
Scratch work (for yourself): Polished solution:

Solution 2:
Consider the function $\mathrm{f}(\mathrm{x})=(\mathrm{x}-1) / \mathrm{x}$.
Scratch work (for yourself):
Polished solution:

Bounded sequences

Definition

- A sequence $\left\{a_{n}\right\}$ is said to be bounded above if
- A sequence $\left\{a_{n}\right\}$ is said to be bounded below if
- A sequence $\left\{a_{n}\right\}$ is said to be bounded if

Example:

What are some upper bounds and lower bounds of these sequences?
$\left\{\frac{n}{n^{2}+1}\right\}$ lower bounds:
upper bounds:
$\{(\mathrm{n}-1) / \mathrm{n}\}$ lower bounds: upper bounds:

Monotonic Sequence Theorem

If sequence $\left\{a_{n}\right\}$ is bounded and monotonic, then $\left\{a_{n}\right\}$ converges.

Example: The sequences $\left\{\frac{n}{n^{2}+1}\right\}$ and $\{(n-1) / n\}$ are both monotonic and bounded, so by the monotonic sequence theorem, they are convergent.

Caution

Determine whether each statement is true/false. If false, give a counterexample. If true, explain.

1) If a sequence $\left\{a_{n}\right\}$ is bounded, then $\left\{a_{n}\right\}$ is convergent.
2) If a sequence $\left\{a_{n}\right\}$ is monotonic, then $\left\{a_{n}\right\}$ is convergent.
3) If a sequence $\left\{a_{n}\right\}$ is convergent, then $\left\{a_{n}\right\}$ is bounded.
4) If a sequence $\left\{a_{n}\right\}$ is convergent, then $\left\{a_{n}\right\}$ is monotonic.
