MATH 1152Q ANSWER TO WORKSHEET PROBLEM

Answer to worksheet https://egunawan.github.io/spring18/notes/notes11_11.pdf problem 3.

Problem 3:

Use Taylor's inequality to determine a partial sum for the Maclaurin series of $f(x)=$ $\cos x$ that is within 0.0001 of $\cos 2$.

Answer:

Because the center of my Taylor polynomial will be $a=0$, and I want to approximate $\cos 2$, I can set my interval of approximation to be $|x-0| \leq 2$.

First, I find a positive number M so that $\left|f^{(n)}(x)\right| \leq M$ for all $|x| \leq 2$. A number that works is $M=1$ because the n-th derivative of $f(x)$ will be either $\pm \sin x$ or $\pm \cos x$.

Next, by Taylor's inequality, we have

$$
\text { (error for } \left.T_{N}(x)\right) \leq \frac{M}{(N+1)!}|x|^{N+1}=\frac{|x|^{N+1}}{(N+1)!} \text { for }|x| \leq 2
$$

Therefore,

$$
\left(\text { error for } T_{N}(2)\right) \leq \frac{|2|^{N+1}}{(N+1)!}
$$

So my goal is to find a positive integer N so that

$$
\frac{2^{N+1}}{(N+1)!} \leq \frac{1}{10^{4}}
$$

Possible Method 1:

For example, if I choose $N=5$, then

$$
\begin{aligned}
\frac{2^{6}}{6!} & =\frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
& =\frac{2^{3}}{6 \cdot 3} \\
& >\frac{1}{18}, \text { which is not smaller than } \frac{1}{10^{4}}, \text { so we need } N \text { bigger than } 5 .
\end{aligned}
$$

If I choose $N=10$, then

$$
\begin{aligned}
\frac{2^{11}}{11!} & =\frac{2 \cdot 2 \cdot 2}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
& =\frac{2 \cdot 2 \cdot 2}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
& =\frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{11 \cdot 10 \cdot 9 \cdot 7 \cdot 6 \cdot 5 \cdot 3} \\
& =\frac{2 \cdot 2 \cdot 2}{11 \cdot 5 \cdot 9 \cdot 7 \cdot 3 \cdot 5 \cdot 3} \\
& =\frac{8}{11 \cdot(5 \cdot 7 \cdot 5) \cdot 9 \cdot(3 \cdot 3)} \\
& =\frac{8}{11 \cdot 175 \cdot 81} \\
& <\frac{1}{10^{4}} .
\end{aligned}
$$

So $N=10$ works, and $T_{10}(x)=1-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!+x^{8} / 8!-x^{10} / 10$! would give you an approximation within .0001 for $\cos 2$.

Possible Method 2: I see that

$$
\begin{aligned}
\frac{|2|^{N+1}}{(N+1)!} & =\frac{2}{(N+1)} \frac{2}{(N)} \frac{2}{(N-1)} \cdots \frac{2}{5} \cdot \frac{2}{4} \cdot \frac{2}{3} \cdot \frac{2}{2} \cdot \frac{2}{1} \\
& =2\left(\frac{2}{(N+1)} \frac{2}{(N)} \frac{2}{(N-1)} \cdots \frac{2}{5} \cdot \frac{2}{4} \cdot \frac{2}{3} \cdot \frac{2}{2}\right) \\
& <2\left(\frac{2}{N+1} 1.1 \ldots \ldots 1.1 .1 .1\right) \\
& =\frac{4}{N+1}
\end{aligned}
$$

Since I want

$$
\frac{2^{N+1}}{(N+1)!} \leq \frac{1}{10^{4}}
$$

it would be enough if

$$
\frac{4}{N+1} \leq \frac{1}{10^{4}}
$$

so it would be enough if

$$
4\left(10^{4}\right) \leq N+1
$$

So $N=40000$ also works, and $T_{4} 0000(x)=1-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!+x^{8} / 8$! $x^{10} / 10!+\cdots+x^{40000} / 40000$! would give you an approximation within .0001 (actually, much smaller) for $\cos 2$.

