
Sec 11.10 part 3 Taylor and Maclaurin Series (Summary) Math 1152 Notes

Taylor series and Taylor polynomials of a function at a. If f(x) can be written as a

power series
∞∑
n=0

cn(x− a)n in an interval around a then cn must be
f (n)(a)

n!
. We call

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·

the Taylor series of f(x) at a and we call the partial sum

Tn(x) =
n∑

i=0

f (i)(a)

i!
(x− a)i = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

the nth-degree Taylor polynomial of f(x) at a. Ideally f(x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n for x near a,

or equivalently f(x) = lim
n→∞

Tn(x) for x near a, and to verify this in examples we can use Taylor’s

inequality below.

Maclaurin series. The Taylor series of f(x) at a = 0 is

∞∑
n=0

f (n)(0)

n!
xn = f(0) + f ′(0)x +

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·

and is called the Maclaurin series of f(x)1. Ideally f(x) =
∞∑
n=0

f (n)(0)

n!
xn for x near 0.

Taylor’s inequality. A bound on the remainder Rn(x) = f(x) − Tn(x), where Tn(x) is a
Taylor polynomial for f(x) at a, is Taylor’s inequality, which uses a bound on |f (n+1)(x)|:

if |f (n+1)(x)| ≤M for all |x− a| ≤ d , then |Rn(x)| ≤ M

(n + 1)!
|x− a|n+1 if |x− a| ≤ d .

Important Maclaurin series representations.

Function Validity Function Validity

1

1− x
=
∞∑
n=0

xn −1 < x < 1 sinx =
∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
all x

ex =
∞∑
n=0

xn

n!
all x cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
all x

ln(1 + x) =
∞∑
n=1

(−1)n−1
xn

n
−1 < x ≤ 1 arctanx =

∞∑
n=1

(−1)n
x2n+1

2n + 1
−1 ≤ x ≤ 1

1The term “Maclaurin series” has a peculiar status: it essentially exists only in calculus courses. People who
use power series regularly, in math or physics, speak instead about a Taylor series or power series at 0.
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Example: (1.) Compute the Taylor series for f(x) = ln(x) at a = 10, and (2.) use Taylor’s

inequality to show when |x− 10| ≤ 4 that |Rn(x)| = | ln(x)− Tn(x)| → 0 as n→∞.

Think: Differentiate lnx enough times to see a pattern. The pattern will give us the coefficients

in the Taylor series and help us bound |f (n+1)(x)| to find M in Taylor’s inequality.

Doing the problem: The first several higher derivatives of f(x) = lnx are in the table below.

n 0 1 2 3 4 5 6 7

f (n)(x) lnx 1/x −1/x2 2/x3 −6/x4 24/x5 −120/x6 720/x7

The pattern for n ≥ 1 is f (n)(x) = (−1)n−1
(n− 1)!

xn
, so the Taylor series of lnx at a = 10 is

∞∑
n=0

f (n)(10)

n!
(x− 10)n = f(10) +

∞∑
n=1

f (n)(10)

n!
(x− 10)n

= ln 10 +
∞∑
n=1

(−1)n−1(n− 1)!

10nn!
(x− 10)n

= ln 10 +
∞∑
n=1

(−1)n−1(x− 10)n

10nn

= ln 10 +
x− 10

10
− (x− 10)2

200
+

(x− 10)3

3000
− (x− 10)4

40000
+ · · ·

Now find an M so that |f (n+1)(x)| ≤M when |x− 10| ≤ 4, which means 6 ≤ x ≤ 14.

Since f (n+1)(x) = (−1)n
n!

xn+1
, we need

∣∣∣∣ n!

xn+1

∣∣∣∣ ≤ M for 6 ≤ x ≤ 14. The biggest value of

∣∣∣∣ n!

xn+1

∣∣∣∣ =
n!

xn+1
in that x-range is

n!

6n+1
, so use M =

n!

6n+1
: if |x− 10| ≤ 4 then

|Rn(x)| ≤ M

(n + 1)!
|x− 10|n+1 =

n!/6n+1

(n + 1)!
|x− 10|n+1 =

1

n + 1

(
|x− 10|

6

)n+1

≤ (2/3)n+1

n + 1
.

Thus Rn(x)→ 0 as n→∞, so for |x− 10| ≤ 4, ln x equals its Taylor series at a = 10.
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Solutions should show all of your work, not just a single final answer.

1. Let f(x) =
√
x.

(a) Does f(x) have a Maclaurin series? Why or why not?

(b) Determine the 3rd-degree Taylor polynomial T3(x) for f(x) =
√
x at a = 9. Start off by

filling in the following table of higher derivatives for f(x).

n f (n)(x) f (n)(9)

0

1

2

3

(c) Compute T3(10) from (b). (This is an estimate for
√

10.)

(d) Use Taylor’s inequality to bound the error |
√

10− T3(10)|.
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(e) Use a computing tool to confirm that the error is smaller than the error bound you stated
in part (d).

2. Use the Maclaurin series for ex and arctanx to find the Maclaurin series for the following
functions. Determine the radius of convergence in each case.

(a) f(x) = e3x + e−3x

(b) f(x) = arctan
(
x
3

)

3. T/F (with justification)

If f(x) = 1 + 3x− 2x2 + 5x3 + · · · for |x| < 1 then f ′′′(0) = 30.
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