Taylor series and Taylor polynomials of a function at a. If f(x) can be written as a power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ in an interval around a then c_n must be $\frac{f^{(n)}(a)}{n!}$. We call

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$

the Taylor series of f(x) at a and we call the partial sum

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$$

the *nth-degree Taylor polynomial* of f(x) at a. Ideally $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ for x near a, or equivalently $f(x) = \lim_{n \to \infty} T_n(x)$ for x near a, and to verify this in examples we can use Taylor's inequality below.

Maclaurin series. The Taylor series of f(x) at a = 0 is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots$$

and is called the *Maclaurin series* of $f(x)^1$. Ideally $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ for x near 0.

Taylor's inequality. A bound on the remainder $R_n(x) = f(x) - T_n(x)$, where $T_n(x)$ is a Taylor polynomial for f(x) at a, is Taylor's inequality, which uses a bound on $|f^{(n+1)}(x)|$:

if
$$|f^{(n+1)}(x)| \le M$$
 for all $|x-a| \le d$, then $|R_n(x)| \le \frac{M}{(n+1)!}|x-a|^{n+1}$ if $|x-a| \le d$.

T

Important Maclaurin series representations.

Function
 Validity
 Function
 Validity

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 $-1 < x < 1$
 $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$
 all x
 $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
 all x
 $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$
 all x
 $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$
 $-1 < x \le 1$
 $\arctan x = \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$
 $-1 \le x \le 1$

¹The term "Maclaurin series" has a peculiar status: it essentially exists only in calculus courses. People who use power series regularly, in math or physics, speak instead about a Taylor series or power series at 0.

Example: (1.) Compute the Taylor series for $f(x) = \ln(x)$ at a = 10, and (2.) use Taylor's inequality to show when $|x - 10| \le 4$ that $|R_n(x)| = |\ln(x) - T_n(x)| \to 0$ as $n \to \infty$.

Think: Differentiate $\ln x$ enough times to see a pattern. The pattern will give us the coefficients in the Taylor series and help us bound $|f^{(n+1)}(x)|$ to find M in Taylor's inequality.

Doing the problem: The first several higher derivatives of $f(x) = \ln x$ are in the table below.

The pattern for $n \ge 1$ is $f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{x^n}$, so the Taylor series of $\ln x$ at a = 10 is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(10)}{n!} (x-10)^n = f(10) + \sum_{n=1}^{\infty} \frac{f^{(n)}(10)}{n!} (x-10)^n$$
$$= \ln 10 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n-1)!}{10^n n!} (x-10)^n$$
$$= \ln 10 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-10)^n}{10^n n}$$
$$= \ln 10 + \frac{x-10}{10} - \frac{(x-10)^2}{200} + \frac{(x-10)^3}{3000} - \frac{(x-10)^4}{40000} + \cdots$$

Now find an M so that $|f^{(n+1)}(x)| \leq M$ when $|x - 10| \leq 4$, which means $6 \leq x \leq 14$.

Since $f^{(n+1)}(x) = (-1)^n \frac{n!}{x^{n+1}}$, we need $\left|\frac{n!}{x^{n+1}}\right| \le M$ for $6 \le x \le 14$. The biggest value of $\left|\frac{n!}{x^{n+1}}\right| = \frac{n!}{x^{n+1}}$ in that *x*-range is $\frac{n!}{6^{n+1}}$, so use $M = \frac{n!}{6^{n+1}}$: if $|x - 10| \le 4$ then

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-10|^{n+1} = \frac{n!/6^{n+1}}{(n+1)!} |x-10|^{n+1} = \frac{1}{n+1} \left(\frac{|x-10|}{6}\right)^{n+1} \le \frac{(2/3)^{n+1}}{n+1}.$$

Thus $R_n(x) \to 0$ as $n \to \infty$, so for $|x - 10| \le 4$, $\ln x$ equals its Taylor series at a = 10.

Solutions should show all of your work, not just a single final answer.

- 1. Let $f(x) = \sqrt{x}$.
 - (a) Does f(x) have a Maclaurin series? Why or why not?
 - (b) Determine the 3rd-degree Taylor polynomial $T_3(x)$ for $f(x) = \sqrt{x}$ at a = 9. Start off by filling in the following table of higher derivatives for f(x).

(c) Compute $T_3(10)$ from (b). (This is an estimate for $\sqrt{10}$.)

(d) Use Taylor's inequality to bound the error $|\sqrt{10} - T_3(10)|$.

- (e) Use a computing tool to confirm that the error is smaller than the error bound you stated in part (d).
- 2. Use the Maclaurin series for e^x and $\arctan x$ to find the Maclaurin series for the following functions. Determine the radius of convergence in each case.
 - (a) $f(x) = e^{3x} + e^{-3x}$

(b) $f(x) = \arctan\left(\frac{x}{3}\right)$

3. T/F (with justification)

If $f(x) = 1 + 3x - 2x^2 + 5x^3 + \cdots$ for |x| < 1 then f'''(0) = 30.