Taylor series and Taylor polynomials of a function at a. If $f(x)$ can be written as a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ in an interval around a then c_{n} must be $\frac{f^{(n)}(a)}{n!}$. We call

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
$$

the Taylor series of $f(x)$ at a and we call the partial sum

$$
T_{n}(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

the n th-degree Taylor polynomial of $f(x)$ at a. Ideally $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ for x near a, or equivalently $f(x)=\lim _{n \rightarrow \infty} T_{n}(x)$ for x near a, and to verify this in examples we can use Taylor's inequality below.

Maclaurin series. The Taylor series of $f(x)$ at $a=0$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
$$

and is called the Maclaurin series of $f(x)^{1}$. Ideally $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$ for x near 0 .
Taylor's inequality. A bound on the remainder $R_{n}(x)=f(x)-T_{n}(x)$, where $T_{n}(x)$ is a Taylor polynomial for $f(x)$ at a, is Taylor's inequality, which uses a bound on $\left|f^{(n+1)}(x)\right|$:

$$
\text { if }\left|f^{(n+1)}(x)\right| \leq M \text { for all }|x-a| \leq d \text {, then }\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \text { if }|x-a| \leq d \text {. }
$$

Important Maclaurin series representations.

Function	Validity	Function	Validity
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$	$-1<x<1$	$\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$	all x
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$	all x	$\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$	all x
$\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$	$-1<x \leq 1$	$\arctan x=\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$	$-1 \leq x \leq 1$

[^0]Example: (1.) Compute the Taylor series for $f(x)=\ln (x)$ at $a=10$, and (2.) use Taylor's inequality to show when $|x-10| \leq 4$ that $\left|R_{n}(x)\right|=\left|\ln (x)-T_{n}(x)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Think: Differentiate $\ln x$ enough times to see a pattern. The pattern will give us the coefficients in the Taylor series and help us bound $\left|f^{(n+1)}(x)\right|$ to find M in Taylor's inequality.

Doing the problem: The first several higher derivatives of $f(x)=\ln x$ are in the table below.

n	0	1	2	3	4	5	6	7
$f^{(n)}(x)$	$\ln x$	$1 / x$	$-1 / x^{2}$	$2 / x^{3}$	$-6 / x^{4}$	$24 / x^{5}$	$-120 / x^{6}$	$720 / x^{7}$

The pattern for $n \geq 1$ is $f^{(n)}(x)=(-1)^{n-1} \frac{(n-1)!}{x^{n}}$, so the Taylor series of $\ln x$ at $a=10$ is

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(10)}{n!}(x-10)^{n} & =f(10)+\sum_{n=1}^{\infty} \frac{f^{(n)}(10)}{n!}(x-10)^{n} \\
& =\ln 10+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n-1)!}{10^{n} n!}(x-10)^{n} \\
& =\ln 10+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-10)^{n}}{10^{n} n} \\
& =\ln 10+\frac{x-10}{10}-\frac{(x-10)^{2}}{200}+\frac{(x-10)^{3}}{3000}-\frac{(x-10)^{4}}{40000}+\cdots
\end{aligned}
$$

Now find an M so that $\left|f^{(n+1)}(x)\right| \leq M$ when $|x-10| \leq 4$, which means $6 \leq x \leq 14$.
Since $f^{(n+1)}(x)=(-1)^{n} \frac{n!}{x^{n+1}}$, we need $\left|\frac{n!}{x^{n+1}}\right| \leq M$ for $6 \leq x \leq 14$. The biggest value of $\left|\frac{n!}{x^{n+1}}\right|=\frac{n!}{x^{n+1}}$ in that x-range is $\frac{n!}{6^{n+1}}$, so use $M=\frac{n!}{6^{n+1}}: \quad$ if $|x-10| \leq 4$ then

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-10|^{n+1}=\frac{n!/ 6^{n+1}}{(n+1)!}|x-10|^{n+1}=\frac{1}{n+1}\left(\frac{|x-10|}{6}\right)^{n+1} \leq \frac{(2 / 3)^{n+1}}{n+1}
$$

Thus $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$, so for $|x-10| \leq 4, \ln x$ equals its Taylor series at $a=10$.

Solutions should show all of your work, not just a single final answer.

1. Let $f(x)=\sqrt{x}$.
(a) Does $f(x)$ have a Maclaurin series? Why or why not?
(b) Determine the 3rd-degree Taylor polynomial $T_{3}(x)$ for $f(x)=\sqrt{x}$ at $a=9$. Start off by filling in the following table of higher derivatives for $f(x)$.

n	$f^{(n)}(x)$	$f^{(n)}(9)$
0		
1		
2		
3		

(c) Compute $T_{3}(10)$ from (b). (This is an estimate for $\sqrt{10}$.)
(d) Use Taylor's inequality to bound the error $\left|\sqrt{10}-T_{3}(10)\right|$.
(e) Use a computing tool to confirm that the error is smaller than the error bound you stated in part (d).
2. Use the Maclaurin series for e^{x} and $\arctan x$ to find the Maclaurin series for the following functions. Determine the radius of convergence in each case.
(a) $f(x)=e^{3 x}+e^{-3 x}$
(b) $f(x)=\arctan \left(\frac{x}{3}\right)$
3. T / F (with justification)

If $f(x)=1+3 x-2 x^{2}+5 x^{3}+\cdots$ for $|x|<1$ then $f^{\prime \prime \prime}(0)=30$.

[^0]: ${ }^{1}$ The term "Maclaurin series" has a peculiar status: it essentially exists only in calculus courses. People who use power series regularly, in math or physics, speak instead about a Taylor series or power series at 0 .

