Polar Coordinates

The area of the sector of a circle swept out by a 90 degree angle with radius r is \qquad .

The area of the sector of a circle swept out by an angle θ with radius r is

The objective is to find the area of the region R bounded by the graph of $r=f(\theta)$ between the two rays $\theta=\alpha$ and $\theta=\beta$. Here, we assume that f is continuous and nonnegative on $[\alpha, \beta]$.

The area of R is found by slicing the region in slices.
Let $\Delta \theta_{k}=\theta_{k}-\theta_{k-1}$ and $\theta_{k}{ }^{*}$ be any point of the interval $\left[\theta_{k-1}, \theta_{k}\right]$ for $k=1,2, \ldots, n$.

The k th slice is approximated by the sector of a circle swept out by an angle $\Delta \theta_{k}$ with radius $f\left(\theta_{k}^{*}\right)$.

Therefore, the area of the k th slice is approximately

To find the area of R, we sum the areas of these slices and take more sectors $(n \rightarrow \infty)$.
The exact area is given by

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{2}\left[f\left(\theta_{k}^{*}\right)\right]^{2} \Delta \theta_{k}=
$$

\qquad
Note the similarity between the formulas. It is helpful to think of the area as being swept out by a rotating ray through the pole that starts with angle α and ends with angle β.

Example:
Find the area enclosed by one loop of the four-leaved rose $r=4 \cos 2 \theta$. Perform a reality check against your result.

Example:
Find the area of the region that lies inside the circle $r=3 \sin \theta$ and outside the cardioid $r=1+\sin \theta$. Perform a reality check against your result.

Practice

1. Find the area enclosed by the cardioid $r=4+4 \sin \theta$. Perform a reality check against your result.

2. Find the area of the region inside the rose $r=2 \cos 2 \theta$ and outside the circle $r=1$. Perform a reality check against your result.

