Motivation

Euler's Formula (using Taylor series) to Polar Coordinates:

https://www.khanacademy.org/math/calculus-home/series-calc/maclaurin-taylor-calc/v/euler-s-formula-and-euler-s-identity

Euler's Formula and Polar Coordinates:

Euler Formula:

Polar Coordinates

(In Multivariable Calculus: polar coordinates \rightarrow cylindrical and spherical coordinates in 3D)
Instead of using horizontal distance and vertical distance from the axes, we use the distance from the origin (radius) as well as the corresponding angle to express a given point.

The origin is called the pole, and the positive x-axis is called the polar axis. The polar coordinates for a point P have the form (r, θ), where the radial coordinate r describes the distance from the origin to P, and the angular coordinate θ describes an angle starting from the positive x-axis and ending on the ray that passes through the origin and P. As usual, positive angles are measured counterclockwise from the positive x-axis.

Caution

The representation for a given point is not unique in the polar coordinate system.

$$
(r, \theta), \quad \text { and } \quad \text { refer to the same point. }
$$

The origin is specified as $(0, \theta)$ in polar coordinates, where θ is any angle.

Example:

Graph the point $\left(1, \frac{5 \pi}{4}\right)$ in polar coordinates. Give two alternative representations for the point.

Converting Between Cartesian and Polar Coordinates

Procedure Converting Coordinates
A point with polar coordinates (r, θ) has Cartesian coordinates (x, y), where
\qquad
A point with Cartesian coordinates (x, y) has polar coordinates (r, θ), where

Example:

Express the point with polar coordinates $\left(2, \frac{3 \pi}{4}\right)$ in Cartesian coordinates.

Example:
Express the point with Cartesian coordinates $(1,-1)$ in polar coordinates.

Converting Between Cartesian and Polar Equations

A curve in polar coordinates is the set of points that satisfy an equation in r and θ. Some sets of points are easier to describe in polar coordinates than in Cartesian coordinates.

For example,

- The polar equation $r=3$.
- The polar equation $\theta=\frac{\pi}{4}$.
- The polar equation $r=\theta$.

(Graph with Desmos https://www.desmos.com/calculator/zpm8i8nbsb)

Example:

Convert the polar equation $r \cos \theta=-4$ to a Cartesian equation.

Example:
Convert the polar equation $r=8 \sin \theta$ to a Cartesian equation.

Graphing in Polar Coordinates

Example (Ex 7 pg 662, Fig 10,11):
Graph the polar equation $r=1+\sin \theta$.

