Tangent Lines

Suppose $h(t)$ and $k(t)$ are differentiable functions of t. Consider the parametric curve

$$
\left\{\begin{array}{l}
x=h(t) \\
y=k(t)
\end{array} \text {, where } y \text { is also a differentiable function of } x .\right.
$$

First Derivative

$$
\frac{d y}{d x}=\square \quad \text { if }
$$

- The curve has a horizontal tangent when
- The curve has a vertical tangent when
\qquad .
\qquad .
 A cycloid is the curve traced out by a point on the circumference of a circle as the circle rolls along a straight line: https://www.desmos.com/calculator/duk9jpvevu
(a) Find the slope of the tangent line at the point where $\theta=\frac{\pi}{3}$.
(b) At what point/s is the tangent line horizontal?
(c) At what point/s is the tangent line vertical?

Second Derivative

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=
$$

Example 2 pg 650: Compute the second derivative for Γ whenever it's defined and use that to determine concavity of the curve.

Areas

Example 3 pg 651: Consider the parametric curve (cycloid) $\Gamma:\left\{\begin{array}{l}x=2(\theta-\sin \theta) \\ y=2(1-\cos \theta)\end{array}\right.$ where $0 \leq \theta \leq 2 \pi$.
i.) Sketch the area enclosed by Γ and the x-axis.

Area

Suppose that the curve is traced out once by the parametric equations $\left\{\begin{array}{l}x=h(t) \\ y=k(t)\end{array}\right.$, $\alpha \leq t \leq \beta$, where $h(t)$ is monotonic and $k(t) \geq 0$. Then, by Substitution Rule, the area is

$$
A=\int_{a}^{b} y d x=
$$

\qquad
ii.) Find the area enclosed by Γ and the x-axis.
iii.) Conduct a reality check. For example, you can compare your sketch in part (i) and your result in part (ii).

