\qquad

7.2 Trigonometric Integrals

Trigonometric Identities and Formulas.

1.) $\sin ^{2} \theta+\cos ^{2} \theta=1$ Why?
3.) $\sin (2 \theta)=2 \sin \theta \cos \theta$
Why?
5.) $\cos ^{2} \theta=\frac{1+\cos (2 \theta)}{2}$
Why?
$\underline{W h y}$
2.) $\tan ^{2} \theta+1=\sec ^{2} \theta$

Why?
4.) $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$ Why?
https://www.khanacademy.org/math/precalculus/
trig-equations-and-identities-precalc/
intro-to-trig-angle-addition-identities-precals/
v/proof-angle-addition-cosine
or differentiate both sides of identity (3).
6.) $\sin ^{2} \theta=\frac{1-\cos (2 \theta)}{2}$
why? HW

Example: Evaluate $\int_{0}^{\pi} \sin ^{3}(5 x) d x$.
Thinking about the problem:
To integrate a power like $\sin ^{3}(5 x)$, let's write $\sin ^{3} \theta$ in terms of lower powers. By the first trigonometric identity above, we can write $\sin ^{2} \theta=1-\cos ^{2} \theta$, so

$$
\sin ^{3} \theta=\sin ^{2} \theta \sin \theta=\left(1-\cos ^{2} \theta\right) \sin \theta
$$

Therefore (using $\theta=5 x$)

$$
\int_{0}^{\pi} \sin ^{3}(5 x) d x=\int_{0}^{\pi}\left(1-\cos ^{2}(5 x)\right) \sin (5 x) d x
$$

Doing the problem:

After rewriting of the function being integrated, let's use the substitution $u=\cos (5 x)$, so $d u=-5 \sin (5 x) d x$:

$$
\int\left(1-\cos ^{2}(5 x)\right) \sin (5 x) d x=\int\left(1-u^{2}\right) \frac{-d u}{5}=-\frac{1}{5} \int\left(1-u^{2}\right) d u
$$

Let's turn x-bounds into u-bounds in the definite integral:

$$
x=0 \Longrightarrow u=\cos (5 \cdot 0)=\cos 0=1, \quad x=\pi \Longrightarrow u=\cos (5 \pi)=-1 .
$$

Therefore

$$
\begin{aligned}
\int_{0}^{\pi} \sin ^{3}(5 x) d x & =\int_{x=0}^{x=\pi}\left(1-\cos ^{2}(5 x)\right) \sin (5 x) d x \\
& =-\frac{1}{5} \int_{u=1}^{u=-1}\left(1-u^{2}\right) d u \quad \text { (Note the order of integration) } \\
& =\frac{1}{5} \int_{-1}^{1}\left(1-u^{2}\right) d u \quad \text { (Sign change in the order of integration) } \\
& =\left.\frac{1}{5}\left(u-\frac{u^{3}}{3}\right)\right|_{-1} ^{1} \\
& =\frac{1}{5}\left(\left(1-\frac{1}{3}\right)-\left(-1-\frac{-1}{3}\right)\right) \\
& =\frac{1}{5}\left(1-\frac{1}{3}+1-\frac{1}{3}\right) \\
& =\frac{1}{5}\left(2-\frac{2}{3}\right) \\
& =\frac{4}{15}
\end{aligned}
$$

Solutions should show all of your work, not just a single final answer.

1. Show the formulas $\sin (2 x)=2 \sin x \cos x$ and $\cos (2 x)=\cos ^{2} x-\sin ^{2} x$ each imply the other one using differentiation: differentiate each identity and simplify to turn the first formula into the second and the second formula into the first.

- Part A: Show that $\sin (2 x)=2 \sin x \cos x$ implies $\cos (2 x)=\cos ^{2} x-\sin ^{2} x$.
- Part B: Show that $\cos (2 x)=\cos ^{2} x-\sin ^{2} x$ implies $\sin (2 x)=2 \sin x \cos x$.

2. Identify the trigonometric identities to simplify the following integrands, and carry out the integration. Remember to include $+C$ in the final answer.
(a) $\int \sin ^{2} x d x$
(b) $\int \cos ^{2} x d x$
3. Evaluate $\int \sin ^{2} x \cos ^{2} x d x$ by using a trigonometric identity involving $\sin x \cos x$ to $\operatorname{sim}-$ plify the integrand.
4. Evaluate the definite integral $\int_{0}^{\pi} \sin ^{3} x d x$.
5. Evaluate $\int \cos x \sin ^{2} x d x$. (There may be more than one technique that works.)
6. T/F (with justification): The value of $\int_{-\pi}^{\pi} \sin ^{9} x d x$ is 0 .
