7.2 Trigonometric Integrals

Trigonometric Identities and Formulas.

1.) $\sin^2 \theta + \cos^2 \theta = 1$	3.) $\sin(2\theta) = 2\sin\theta\cos\theta$	5) $\cos^2 \theta = \frac{1}{2}$	$1 + \cos(2\theta)$
Why?	Why?	(0.) (0.5) (0 - 0.5) (2
Wily.		Why?	

2.) $\tan^2 \theta + 1 = \sec^2 \theta$ <u>Why?</u>

4.)
$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$6.) \sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$$
why? **HW**

https://www.khanacademy.org/math/precalculus/

trig-equations-and-identities-precalc/

intro-to-trig-angle-addition-identities-precalc/

v/proof-angle-addition-cosine

or differentiate both sides of identity (3).

Example: Evaluate
$$\int_0^{\pi} \sin^3(5x) \, dx$$
.

Thinking about the problem:

To integrate a power like $\sin^3(5x)$, let's write $\sin^3 \theta$ in terms of lower powers. By the first trigonometric identity above, we can write $\sin^2 \theta = 1 - \cos^2 \theta$, so

$$\sin^3 \theta = \sin^2 \theta \sin \theta = (1 - \cos^2 \theta) \sin \theta.$$

Therefore (using $\theta = 5x$)

$$\int_0^\pi \sin^3(5x) \, dx = \int_0^\pi (1 - \cos^2(5x)) \sin(5x) \, dx.$$

Doing the problem:

After rewriting of the function being integrated, let's use the substitution $u = \cos(5x)$, so $du = -5\sin(5x) dx$:

$$\int (1 - \cos^2(5x)) \sin(5x) \, dx = \int (1 - u^2) \frac{-du}{5} = -\frac{1}{5} \int (1 - u^2) \, du.$$

Let's turn x-bounds into u-bounds in the definite integral:

 $x=0 \Longrightarrow u=\cos(5\cdot 0)=\cos 0=1, \quad x=\pi \Longrightarrow u=\cos(5\pi)=-1.$

Therefore

$$\int_{0}^{\pi} \sin^{3}(5x) dx = \int_{x=0}^{x=\pi} (1 - \cos^{2}(5x)) \sin(5x) dx$$

$$= -\frac{1}{5} \int_{u=1}^{u=-1} (1 - u^{2}) du \quad \text{(Note the order of integration)}$$

$$= \frac{1}{5} \int_{-1}^{1} (1 - u^{2}) du \quad \text{(Sign change in the order of integration)}$$

$$= \frac{1}{5} \left(\left(u - \frac{u^{3}}{3} \right) \right)_{-1}^{1}$$

$$= \frac{1}{5} \left(\left(1 - \frac{1}{3} \right) - \left(-1 - \frac{-1}{3} \right) \right)$$

$$= \frac{1}{5} \left(1 - \frac{1}{3} + 1 - \frac{1}{3} \right)$$

$$= \frac{1}{5} \left(2 - \frac{2}{3} \right)$$

$$= \frac{4}{15}.$$

Solutions should show all of your work, not just a single final answer.

- 1. Show the formulas $\sin(2x) = 2 \sin x \cos x$ and $\cos(2x) = \cos^2 x \sin^2 x$ each imply the other one using differentiation: differentiate each identity and simplify to turn the first formula into the second and the second formula into the first.
 - Part A: Show that $\sin(2x) = 2\sin x \cos x$ implies $\cos(2x) = \cos^2 x \sin^2 x$.

• Part B: Show that $\cos(2x) = \cos^2 x - \sin^2 x$ implies $\sin(2x) = 2\sin x \cos x$.

2. Identify the trigonometric identities to simplify the following integrands, and carry out the integration. Remember to include +C in the final answer.

(a)
$$\int \sin^2 x \, dx$$

(b)
$$\int \cos^2 x \, dx$$

3. Evaluate $\int \sin^2 x \cos^2 x \, dx$ by using a trigonometric identity involving $\sin x \cos x$ to simplify the integrand.

4. Evaluate the definite integral $\int_0^{\pi} \sin^3 x \, dx$.

5. Evaluate $\int \cos x \sin^2 x \, dx$. (There may be more than one technique that works.)

6. T/F (with justification): The value of $\int_{-\pi}^{\pi} \sin^9 x \, dx$ is 0.