Name: \qquad
NOTE: FIRST ATTEMPT WITHOUT LOOKING AT THE HINTS AND ANSWERS. Check your answer on Wolfram|Alpha by typing "series representation for ..."

1. Suppose the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is R. Use the $\underline{\underline{\text { Test }}}$ of Your Choice to find the radius of convergence of the series.
a. $\sum_{n=1}^{\infty} n c_{n} x^{n-1}$
b. $\sum_{n=0}^{\infty} \frac{c_{n}}{n+1} x^{n+1}$

ANSWER: See Theorem 2 Sec 11.9 pg 754.
2. Find a power series representation for the function and determine the interval of convergence.
a. $\frac{5}{1-4 x^{2}}$
b. $\frac{2}{3-x}$
c. $\frac{x}{9+x^{2}}$
d. $\frac{x}{2 x^{2}+1}$

GUIDE FOR a,b,c,d: Follow Examples 1,2,3 Sec 11.9.
e. $\frac{3}{x^{2}-x-2}$
f. $\frac{x+2}{2 x^{2}-x-1}$

GUIDE FOR e, f: First use partial fraction. Compute the two power series using the same method as Example 2. Then combine the two series.
g. $\frac{x}{(1+4 x)^{2}}$

ANSWER:
Step i: Apply Theorem 2 (term-by-term differentiation) to get the series for $-4 /(1+4 x)^{\wedge} 2$.
Step ii: Then multiply the series by $\mathrm{x} /(-4)$.
Step iii: Radius of convergence is $\mathrm{R}=1 / 4$.
h. $\left(\frac{x}{2-x}\right)^{3}$

ANSWER:
Step i: To get $1 /(2-x)^{\wedge} 2$, follow Example 5.
Step ii: Apply another term-by-term differentiation to get $1 /(2-x)^{\wedge} 3$.
Step iii: Multiply this series by $\left(x^{\wedge} 3\right) / 2$.
Step iv: Radius of converge is $\mathrm{R}=2$.
i. $\frac{1+x}{(1-x)^{2}}$

ANSWER:
Step i: To get $1 /(1-x)^{\wedge} 2$, use Example 5.
Step ii: To get $x /(1-x)^{\wedge} 2$, multiply the series by x.
Step iii: Combine them, then shift some indices to turn them into just one series.
Step iv: Radius of convergence is $\mathrm{R}=1$.
3. Evaluate the indefinite integral as a power series. What is the radius of convergence?
a. $\int \frac{x}{1+x^{3}} d x$

ANSWER:
Step i: First follow Example 8a (top half) to get the series for $1 /\left(1+x^{\wedge} 3\right)$.
Step ii: Then multiply your series by x .
Step iii: Then apply Theorem 2 (term-by-term integration).
Step iv: Radius of convergence is the same as in Example 8a, $\mathrm{R}=1$.
b. $\int x^{2} \ln (1+x) d x$

ANSWER:
Step i: First follow Example 6 to get the series for $\ln (1+x)$.
Step ii: Then multiply your series by $\mathrm{x}^{\wedge} 2$.
Step iii: Then apply Theorem 2 (term-by-term integration).
Step iv: Radius of convergence is the same as in Example 6, $\mathrm{R}=1$.
c. $\int \frac{\tan ^{-1} x}{x} d x$

ANSWER:
Step i: First follow Example 7 to get the series for $\arctan (x)$.
Step ii: Then multiply your series by $1 / \mathrm{x}$.
Step iii: Then apply Theorem 2 (term-by-term integration).

Step iv: Radius of convergence is the same as in Example 7, $\mathrm{R}=1$.
4. Consider the geometric series $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$.
a. Find the sum of the series $\sum_{n=1}^{\infty} n x^{n}$ for $|x|<1$.

ANSWER:
Step i: Use Theorem 2 (term-by-term differentiation) to get $1 /(1-x)^{\wedge} 2$
Step ii: Then multiply by x .
Step iii: Answer is $\mathrm{x} /(1-\mathrm{x})^{\wedge} 2$
b. Find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.

ANSWER:
Step i: Put $x=1 / 2$ into the function for part (a).
Step ii: You get $(1 / 2) /(1-1 / 2)^{\wedge} 2=2$.
c. Find the sum of the series $\sum_{n=1}^{\infty} n^{2} x^{n}$ for $|x|<1$.

ANSWER: Start with the answer for part (a). Use Theorem 2 (term-by-term differentiation), then multiply by x .
d. Find the sum of the series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$.

ANSWER: Put $x=1 / 2$ into the function for part (d).
5. It is known that $\cos x$ has a power series representation $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$.
a. Find a power series representation for $\cos \sqrt{x}$.

ANSWER: Use Theorem (composition) with $h(x)=\operatorname{sqrt}(x)$ and $f(x)=\cos x$. The answer should look like the same series but you replace $x^{\wedge}(2 n)$ with $x^{\wedge} n$.
b. Find a power series representation for $\int \cos \sqrt{x} d x$.

GUIDE: Apply Theorem 2 (term-by-term integration).
c. Assume that the series you found in part (b) converges for all $x \geq 0$. Use your answer in part (b) to determine a series that represents $\int_{0}^{1} \cos \sqrt{x} d x$.
GUIDE: Follow Example 8b(top half). The answer should be a series, not an approximation.
d. If the first two non-zero terms of the series are used to estimate the value of the definite integral from part (c), provide a bound on the error of this estimate.

GUIDE: Use Alternating Series Theorem. Follow Example 8b(bottom half).
6. It is known that e^{x} has a power series representation $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for $-\infty<x<\infty$.
a. Find a power series representation for $x e^{x}$.

ANSWER: Multiply the given series by the number x. Answer is sum from $n=0$ of $\mathrm{x}^{\wedge}(1+\mathrm{n}) / \mathrm{n}$!
b. Find a power series representation for $\frac{d}{d x}\left(x e^{x}\right)$.

ANSWER: Take the power series from part (a) and apply Theorem 2 (term-byterm differentiation). Answer is sum from $n=0$ of $(n+1) x^{\wedge} n / n$!
c. Evaluate $\sum_{n=0}^{\infty} \frac{(n+1)(-1)^{n}}{n!}$.

ANSWER:
Step i: Evaluate the function for derivative $d / d x\left(x^{\wedge} \mathrm{e}^{x}\right)$ using product rule - you should get $(x+1) e^{\wedge} x$.
Step ii: Due to the power series of part (b), we know that this derivative when $\mathrm{x}=$ -1 is the sum of the given series (part c).
Step iii: Final answer is $((-1)+1) \mathrm{e}^{\wedge}(-1)=0$.
d. Find a power series representation for $\int x e^{x} d x$.

ANSWER: Use the series from part (a) and apply Theorem 2 (term-by-term integration).
Answer is sum from $n=0$ of $x^{\wedge}(n+2) /(n!(n+2))$.
e. Evaluate $\sum_{n=1}^{\infty} \frac{1}{n!(n+2)}$.

ANSWER:
Step i: Evaluate the function for the antiderivative for the function $\mathrm{xe}^{\wedge} \mathrm{x}$ using integration by parts - you should get ($\mathrm{x}-1$) $\mathrm{e}^{\wedge} \mathrm{x}+\mathrm{C}$.
Step ii: Due to part (d), we know that this antiderivative when $x=1$ is the sum of the series (part e) but starting at $\mathrm{n}=0$, so the sum of the series (part e) starting at $\mathrm{n}=0$ is equal to $(1-1) \mathrm{e}^{\wedge} 2=0$.
Step iii: But the given series starts at $\mathrm{n}=1$, so we have to subtract the term where $\mathrm{n}=0$. The term when $\mathrm{n}=0$ is $1 /(0!(0+2))=1 /(1.2)=1 / 2$.
So the final answer is minus $1 / 2$.

