1. Consider the parametric curve Γ :

$$
\begin{aligned}
& x=t^{2} \\
& y=t^{3}-3 t
\end{aligned}
$$

a. Find the points on Γ where the tangent is horizontal or vertical.

Answer

$$
\frac{d y}{d x}=\frac{3 t^{2}-3}{2 t}
$$

When $t=1$ or -1 , the tangent is horizontal. When $t=0$, the tangent is vertical.
The tangent is horizontal at points $(1,-2) \&(1,2)$.The tangent is vertical at point $(0,0)$.
b. Determine where Γ is concave up and downward.

Answer

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}} \\
& =\frac{\frac{d}{d t}\left(\frac{3 t^{2}-3}{2 t}\right)}{2 t} \\
& =\frac{2 t(6 t)-\left(3 t^{2}-3\right) 2}{(2 t)^{2} 2 t} \\
& =\frac{12 t^{2}-6 t^{2}+6}{8 t^{3}} \\
& =\frac{6 t^{2}+6}{8 t^{3}} \\
& =\frac{6}{8} \frac{t^{2}+1}{t^{3}} \\
& =\frac{3}{4} \frac{t^{2}+1}{t^{3}}
\end{aligned}
$$

Therefore, Γ is concave up when t is positive and concave downward when t is negative.
c. Find the area of the region bounded by Γ and the x-axis. To be more specific, find the area of the region bounded (above) by Γ and bounded (below) by the x-axis.

Answer

It may be helpful to first sketch the graph for a few values of t between $-\sqrt{3}$ and $\sqrt{3}$.
First, we check that $y=0$ when $t=-\sqrt{3}, t=0$, and $t=\sqrt{3}$.
Next, we find that y is positive when $-\sqrt{3}<t<0$ and negative when $0<t<\sqrt{3}$.
Since we want Γ to be above the region and the x-axis to be below our region, we will consider the portion of Γ for $-\sqrt{3} \leq t \leq 0$. Note that $x(-\sqrt{3})=3$ and $x(0)=0$.

The area of our region is

$$
\begin{aligned}
\int_{0}^{3} y \mathrm{dx} & =\int_{0}^{-\sqrt{3}}\left(t^{3}-3 t\right)(2 t) \mathrm{dt} \\
& =\int_{0}^{-\sqrt{3}} 2 t^{4}-6 t^{2} \mathrm{dt} \\
& =\frac{2}{5} t^{5}-\left.\frac{6}{3} t^{3}\right|_{t=0} ^{t=-\sqrt{3}} \\
& =-\frac{2}{5} 9 \sqrt{3}+6 \sqrt{3} \\
& =\sqrt{3} \frac{-18+30}{5} \\
& =\sqrt{3} \frac{12}{5}
\end{aligned}
$$

Reality check 1 with graphing technology:
My answer is somewhat close to 4. I plot the parametric curve using a graphing tool and roughly estimate that the area of the region is close to 4 .

Reality check 2 without computer:
My answer is somewhat close to 4 . Using my answer from part (a), I reasoned that the maximum value of y when $-\sqrt{3}<t<0$ is $y=2$. Since my region is bounded by $x=0$ and $x=3$, and since my upper bound Γ is concave downward, I see that the area should be less than the area of the rectangle with width 2 and height 3 .

