(Please use your own paper. Please leave plenty of space between each answer).

1. Consider the point $\left(-2, \frac{3 \pi}{4}\right)$ in polar coordinates.
a. Graph the point.
b. Give two alternative representations for the point (in polar coordinates).
c. Express the point in Cartesian coordinates.
2. Consider the point $(1,-2)$ in Cartesian coordinates. Give two alternative representations (in polar coordinates) for the point. Hint: You can write arctan(2) or use a calculator to approximate it.
3. Consider the polar equation $r^{2} \cos 2 \theta=1$.
a. Convert the polar equation to Cartesian equation.
b. Identify the curve. Hint: See page $678, \operatorname{Sec} 10.5$.
4. Consider the polar equation $r=\tan \theta \sec \theta$.
a. Convert the polar equation to Cartesian equation.
b. Identify the curve.
c. Put in the polar equation on desmos.com to graph the curve. Sketch it - label at least three points. Type 'theta' for the angle. https://www.desmos.com/calculator/zpwigtyctl
d. Put in the Cartesian equation on desmos.com and verify that you get the same curve.
5. Consider the Cartesian equation $x^{2}+y^{2}=4 x$.
a. Convert the Cartesian equation $x^{2}+y^{2}=4 x$ to polar equation.
b. Put in the polar equation on desmos.com and sketch the curve - label at least three points.
c. Put in the Cartesian equation on desmos.com and verify that you get the same curve.
6. Convert the Cartesian equation $x y=4$ to polar equation.
7. Sketch the graph of the polar equation $r=4 \sin 3 \theta$ without technology. Then plot the polar equation with desmos.com. Type: $\mathrm{r}=4 \sin (3$ theta). https://www.desmos.com/calculator/zpwistyct1
8. Sketch the graph of the polar equation $r=1-2 \sin \theta$ without technology. Then verify your graph with desmos.com. https://www.desmos.com/calculator/zpwigtyctl
9. Find the slope of the tangent line of the curve $r=4 \cos 2 \theta$ when $\theta=\frac{\pi}{4}$. Graph the curve using desmos.com so that you can estimate that the slope you've computed makes sense.
10. Find the points on the cardioid $r=1+\sin \theta$ where the tangent line is horizontal and where the tangent line is vertical.
Answer: You only need to check when the theta is between 0 and 2pi. Copy Example 9 page 664 .
