\qquad

7.3 Trigonometric Substitution

In each of the following trigonometric substitution problems, draw a triangle and label an angle and all three sides corresponding to the trigonometric substitution you select.

Summary of Trigonometric Substitution (understand how to make the triangles).

$$
\begin{array}{lll}
\sqrt{a^{2}-x^{2}} & \sqrt{x^{2}-a^{2}} & \sqrt{x^{2}+a^{2}}
\end{array}
$$

$\sin \theta=\frac{x}{a}, \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$
$\cos \theta=\frac{a}{x}$, that is, \qquad $\tan \theta=\frac{x}{a}$, where

$$
O R
$$

$O R$
$O R$

$\square=\frac{x}{a}$, where

\square
$=\frac{a}{x}$, that is, \qquad $=\frac{x}{a}$, where

Example A (indefinite integral): Evaluate $\int \frac{d x}{\sqrt{9-x^{2}}}$.

Thinking about the problem:
Since the integrand involves $\sqrt{9-x^{2}}$ and there is not an extra factor of x in the numerator (if there were it might be possible to do a u-substitution with $u=9-x^{2}$), we will try a trigonometric substitution corresponding to a right triangle with a leg of length $\sqrt{9-x^{2}}$, hypotenuse 3 , and the other leg has length x.

Doing the problem: Using the triangle diagram above,

$$
\sin \theta=\frac{x}{3} \quad \text { where }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
$$

so $x=3 \sin \theta$. Then $d x=3 \cos \theta d \theta$. Also from the triangle $\cos \theta=\frac{\sqrt{9-x^{2}}}{3}$, so $\sqrt{9-x^{2}}=$ $3 \cos \theta$. The integral becomes

$$
\begin{aligned}
\int \frac{d x}{\sqrt{9-x^{2}}} & =\int \frac{3 \cos \theta d \theta}{3 \cos \theta} \\
& =\int d \theta \\
& =\theta+C
\end{aligned}
$$

Since the substitution we used was $x=3 \sin \theta, \theta=\arcsin \left(\frac{x}{3}\right)$. So

$$
\int \frac{d x}{\sqrt{9-x^{2}}}=\arcsin \left(\frac{x}{3}\right)+C .
$$

Example B (definite integral): Evaluate $\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x$.
Thinking about the problem: Since the integrand involves $\sqrt{4-x^{2}}$ and there is not just a factor of x in the numerator (otherwise we can do a u-substitution with $u=4-x^{2}$), we try a trigonometric substitution with a triangle with a side of length $\sqrt{4-x^{2}}$, hypotenuse 2 , and the other side has length x.

Doing the problem:

Solutions should show all of your work, not just a single final answer.

1. Evaluate $\int \frac{d x}{\left(9+x^{2}\right)^{3 / 2}}$.
(a) Fill in the sides of the right triangle below where $\sqrt{9+x^{2}}$ is one of the sides.

(b) Using the sides of the triangle in (a), compute the indefinite integral. Write the final answer in terms of x.
2. Evaluate $\int \frac{\sqrt{x^{2}-9}}{x^{3}} d x$.
(a) Fill in the sides of the right triangle below where $\sqrt{x^{2}-9}$ is one of the sides.

(b) Using the sides of the triangle in (a), compute the indefinite integral. Write the final answer in terms of x.
3. Evaluate the definite integral $\int_{0}^{3} \frac{x^{2}}{\sqrt{9-x^{2}}} d x$. (Tip: When you make a trigonometric substitution, change the bounds of integration as part of the substitution. See Example B.)
4. T/F (with justification): To evaluate $\int \frac{d x}{x^{2} \sqrt{x^{2}+2}}$ by trigonometric substitution, use $x=2 \tan \theta$.
