7.1 Integration by Parts

Integration By Parts. Reverse product rule

$$u\,v' + v\,u' = \frac{d}{dx}(uv) \quad ,$$

and put $v' = \frac{dv}{dx}$ and $u' = \frac{du}{dx}$ to get integration by parts.

For indefinite integrals,

$$\int u\,dv + \int v\,du = uv \quad ,$$

where u and v are both functions of x, so

$$\int u \, dv = uv - \int v \, du.$$

For definite integrals,

$$\int_a^b u \, dv + \int_a^b v \, du = uv \bigg|_a^b \quad ,$$

SO

$$\int_{a}^{b} u \, dv = uv \Big|_{a}^{b} - \int_{a}^{b} v \, du \, dv.$$

Example A: Evaluate $\int x^2 e^x dx$.

Thinking about the problem:

Since the integral is a product of "unrelated" functions x^2 and e^x , we will use integration by parts. We have to pick u and dv, and then du and v. Passing from u to du is differentiation, and for any u in practice we can get du. However, passing from dv to v involves integration and that can be tricky. The key is to pick dv first: let dv be the most "complicated" expression in the integrand that you already know how to integrate, and then u is just the rest of the integrand. That is more practical advice than acronym-based tricks you may read elsewhere.

Doing the problem:

To figure out $\int x^2 e^x dx$ with integration by parts, the function e^x is more complicated (more sophisticated) than x^2 . Set $dv = e^x dx$ and then $u = x^2$, so $u dv = x^2 e^x dx$

Next, we compute du = 2x dx and $v = e^x$. Here are the results in a table.

$$u = x^2 \qquad dv = e^x dx$$

$$du = 2x dx \qquad v = e^x$$

From $\int u \, dv = u \, v - \int v \, du$ we get

$$\int x^2 e^x \, dx = \int u \, dv = uv - \int v \, du = x^2 e^x - \int 2x e^x \, dx = x^2 e^x - 2 \int x e^x \, dx.$$

Now we integrate by parts $\int xe^x dx$, which is simpler than what we started with. Again, e^x is the most complicated factor in the integrand that we know how to integrate. Set $dv = e^x dx$ and then u = x, so $u dv = xe^x dx$. We get du = dx and $v = e^x$. as in the following table.

$$\begin{array}{|c|c|c|c|} \hline u = x & dv = e^x dx \\ \hline du = dx & v = e^x \\ \hline \end{array}$$

Then

$$\int xe^x \, dx = \int u \, dv = uv - \int v \, du = xe^x - \int e^x \, dx = xe^x - e^x + C.$$

Putting this all together,

$$\int x^{2}e^{x} dx = x^{2}e^{x} - 2 \int xe^{x} dx$$

$$= x^{2}e^{x} - 2 (xe^{x} - e^{x} + C)$$

$$= x^{2}e^{x} - 2xe^{x} + 2e^{x} + 2C$$

$$= x^{2}e^{x} - 2xe^{x} + 2e^{x} + 2C.$$

Since C is an arbitrary constant, we could change 2C to C in the last formula if we wished.

Example B: Evaluate $\int \tan^2 x \sec x \, dx$.

- 1. We want to evaluate $\int xe^{-3x} dx$.
 - (a) Fill in the following table. (Hint: pick dv first, then u.)

u =	dv =
du =	v =

- (b) Evaluate the integral using integration by parts.
- 2. We want to evaluate $\int_0^{\pi} x \cos(3x) dx$.
 - (a) Fill in the following table. (Hint: pick dv first, then u.)

u =	dv =
du =	v =

- (b) Evaluate $\int x \cos(3x) dx$ using integration by parts.
- (c) Using part (b), evaluate $\int_0^{\pi} x \cos(3x) dx$.
- 3. Evaluate $\int_0^{\pi} x^2 \sin x \, dx$.
- 4. Evaluate $\int e^x \cos(3x) dx$.
- 5. In 'In-class work 7.2' you found $\int \cos^2 x \, dx$ by the trick of writing $\cos^2 x$ in terms of $\cos(2x)$. Instead compute this with integration by parts. (Hint: $\sin^2 x + \cos^2 x = 1$.)
- 6. T/F (with justification): For differentiable f(x), $\int_0^{\pi} f(x) \cos x \, dx = -\int_0^{\pi} f'(x) \sin x \, dx$.