\qquad

7.1 Integration by Parts

Integration By Parts. Reverse product rule

$$
u v^{\prime}+v u^{\prime}=\frac{d}{d x}(u v)
$$

and put $v^{\prime}=\frac{d v}{d x}$ and $u^{\prime}=\frac{d u}{d x}$ to get integration by parts.
For indefinite integrals,

$$
\int u d v+\int v d u=u v
$$

where u and v are both functions of x, so

$$
\int u d v=u v-\int v d u
$$

For definite integrals,

$$
\int_{a}^{b} u d v+\int_{a}^{b} v d u=\left.u v\right|_{a} ^{b}
$$

so

$$
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

Example A: Evaluate $\int x^{2} e^{x} d x$.
Thinking about the problem:
Since the integral is a product of "unrelated" functions x^{2} and e^{x}, we will use integration by parts. We have to pick u and $d v$, and then $d u$ and v. Passing from u to $d u$ is differentiation, and for any u in practice we can get $d u$. However, passing from $d v$ to v involves integration and that can be tricky. The key is to pick dv first: let $d v$ be the most "complicated" expression in the integrand that you already know how to integrate, and then u is just the rest of the integrand. That is more practical advice than acronym-based tricks you may read elsewhere.

Doing the problem:

To figure out $\int x^{2} e^{x} d x$ with integration by parts, the function e^{x} is more complicated (more sophisticated) than x^{2}. Set $d v=e^{x} d x$ and then $u=x^{2}$, so $u d v=x^{2} e^{x} d x$

Next, we compute $d u=2 x d x$ and $v=e^{x}$. Here are the results in a table.

$$
\begin{array}{|c|c|}
\hline u=x^{2} & d v=e^{x} d x \\
\hline d u=2 x d x & v=e^{x} \\
\hline
\end{array}
$$

From $\int u d v=u v-\int v d u$ we get

$$
\int x^{2} e^{x} d x=\int u d v=u v-\int v d u=x^{2} e^{x}-\int 2 x e^{x} d x=x^{2} e^{x}-2 \int x e^{x} d x
$$

Now we integrate by parts $\int x e^{x} d x$, which is simpler than what we started with. Again, e^{x} is the most complicated factor in the integrand that we know how to integrate. Set $d v=e^{x} d x$ and then $u=x$, so $u d v=x e^{x} d x$. We get $d u=d x$ and $v=e^{x}$. as in the following table.

$$
\begin{array}{|c|c|}
\hline u=x & d v=e^{x} d x \\
\hline d u=d x & v=e^{x} \\
\hline
\end{array}
$$

Then

$$
\int x e^{x} d x=\int u d v=u v-\int v d u=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C .
$$

Putting this all together,

$$
\begin{aligned}
\int x^{2} e^{x} d x & =x^{2} e^{x}-2 \int x e^{x} d x \\
& =x^{2} e^{x}-2\left(x e^{x}-e^{x}+C\right) \\
& =x^{2} e^{x}-2 x e^{x}+2 e^{x}+2 C \\
& =x^{2} e^{x}-2 x e^{x}+2 e^{x}+2 C .
\end{aligned}
$$

Since C is an arbitrary constant, we could change $2 C$ to C in the last formula if we wished.

In-class work 7.1
Example B: Evaluate $\int \tan ^{2} x \sec x d x$.

1. We want to evaluate $\int x e^{-3 x} d x$.
(a) Fill in the following table. (Hint: pick $d v$ first, then u.)

$u=$	$d v=$
$d u=$	$v=$

(b) Evaluate the integral using integration by parts.
2. We want to evaluate $\int_{0}^{\pi} x \cos (3 x) d x$.
(a) Fill in the following table. (Hint: pick $d v$ first, then u.)

$u=$	$d v=$
$d u=$	$v=$

(b) Evaluate $\int x \cos (3 x) d x$ using integration by parts.
(c) Using part (b), evaluate $\int_{0}^{\pi} x \cos (3 x) d x$.
3. Evaluate $\int_{0}^{\pi} x^{2} \sin x d x$.
4. Evaluate $\int e^{x} \cos (3 x) d x$.
5. In 'In-class work 7.2' you found $\int \cos ^{2} x d x$ by the trick of writing $\cos ^{2} x$ in terms of $\cos (2 x)$. Instead compute this with integration by parts. (Hint: $\sin ^{2} x+\cos ^{2} x=1$.)
6. T/F (with justification): For differentiable $f(x), \int_{0}^{\pi} f(x) \cos x d x=-\int_{0}^{\pi} f^{\prime}(x) \sin x d x$.

