Absolute Convergence and the Ratio Test

Solutions should show all of your work, not just a single final answer.

1. Define an absolutely convergent series and a conditionally convergent series, and state the ratio test.
2. Use the ratio test to determine whether the following infinite series converge or diverge.
(a) $\sum_{n=1}^{\infty} \frac{n}{3^{n}}$. (This was already done with the Integral Test in Worksheet 11.3.)
(b) $\sum_{n=0}^{\infty} \frac{(-2)^{n}}{n!}$.
(c) $\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2}}$.
3. For the following infinite series, determine which are absolutely convergent, which are conditionally convergent, and which are neither. Mention all convergence tests you use.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}$. (This was already met in Worksheet 11.5.)
(b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.
(c) $\sum_{n=1}^{\infty} \frac{n \sin n}{3^{n}}$.
4. T/F (with justification)

Convergence of a p-series for $p>1$ can be shown with the ratio test.
5. T/F (with justification)

There is an infinite series whose terms can be rearranged to be an infinite series with a different value.

