11.3 The Integral Test and Estimates of Sums

The Integral Test. If $a_{n}=f(n)$ where $f(x)$ is a continuous, positive, decreasing function for $x \geq 1$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ is convergent. Another way of saying this is
(i) if $\int_{1}^{\infty} f(x) d x$ converges then $\sum_{n=1}^{\infty} a_{n}$ converges,
(ii) if $\int_{1}^{\infty} f(x) d x$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Tips on checking a function is decreasing: $f(x)$ is decreasing on an interval when $f^{\prime}(x)<0$ there. Algebra may also be useful: a sum or product of decreasing positive functions is decreasing, and if $f=1 / g(x)$ on an interval then $f(x)$ is decreasing there if $g(x)$ is increasing, which can be checked by showing $g^{\prime}(x)>0$ if it is not clear by algebra that $g(x)$ is increasing. For example, $\frac{1}{(x+1)(x+2)}$ is decreasing for $x \geq 1$ since $x+1$ and $x+2$ are each increasing for $x \geq 1$.
Remainder Estimate. If $a_{n}=f(n)$ for $f(x)$ as above, suppose $s=\sum_{n=1}^{\infty} a_{n}$ converges. For $N \geq 1$, let $s_{N}=\sum_{n=1}^{N} a_{n}$ and $R_{N}=s-s_{N}$, so R_{N} is the N th remainder term. Then

$$
\int_{N+1}^{\infty} f(x) d x \leq R_{N} \leq \int_{N}^{\infty} f(x) d x
$$

Note: The integral test works for series not starting at $n=1$: if $f(x)$ is continuous, positive, and decreasing for $x \geq c$ then convergence of $\sum_{n=c}^{\infty} f(n)$ is the same as convergence of $\int_{c}^{\infty} f(x) d x$.

Example: Determine whether or not $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ converges.
Thinking about the problem:
Use the integral test: $a_{n}=f(n)$ where $f(x)=\frac{x}{x^{2}+1}$. If we can show $f(x)$ is continuous, positive, and decreasing for $x \geq 1$, then $\sum_{n=1}^{\infty} a_{n}$ converges exactly when $\int_{1}^{\infty} f(x) d x$ converges.

Doing the problem:

The function $f(x)=\frac{x}{x^{2}+1}$ is continuous since x and $x^{2}+1$ are continuous and the denominator is never 0 (no vertical asymptotes). For $x \geq 1, x$ and $x^{2}+1$ are positive so $f(x)>0$. To show $f(x)$ is decreasing for $x \geq 1$, its derivative (by the quotient rule) is $\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$, and for $x>1$ we have $1-x^{2}<0$, so $f^{\prime}(x)<0 .{ }^{1}$ This confirms all the conditions needs to apply the integral test: to determine if $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ converges we look at $\int_{1}^{\infty} \frac{x}{x^{2}+1} d x$. Let $u=x^{2}+1$ so $d u=2 x d x, x=1 \Rightarrow u=2$, and $x \rightarrow \infty \Rightarrow u \rightarrow \infty$, so

$$
\begin{aligned}
\int_{1}^{\infty} \frac{x}{x^{2}+1} d x & =\int_{2}^{\infty} \frac{(1 / 2) d u}{u} \\
& =\frac{1}{2} \int_{2}^{\infty} \frac{d u}{u} \\
& =\frac{1}{2} \lim _{b \rightarrow \infty} \int_{2}^{b} \frac{d u}{u} \\
& =\frac{1}{2} \lim _{b \rightarrow \infty}\left(\left.\ln u\right|_{2} ^{b}\right) \\
& =\frac{1}{2} \lim _{b \rightarrow \infty}(\ln b-\ln 2) \\
& =\infty
\end{aligned}
$$

Since $\int_{1}^{\infty} \frac{x}{x^{2}+1} d x$ diverges, the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ diverges.

[^0]
Solutions should show all of your work, not just a single final answer.

1. Use the integral test to determine if $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$ converges or diverges.
(a) Explain why the integral test can be applied.
(b) Apply the integral test to determine if $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$ converges or diverges.
2. Use the integral test to determine if $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)}$ converges or diverges. See the note on the first page of this worksheet about series not starting at $n=1$.
(a) Explain why the integral test can be applied.
(b) Apply the integral test to determine if $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)}$ converges or diverges.
3. Consider the series $\sum_{n=1}^{\infty} \frac{n}{3^{n}}$.
(a) Verify that the integral test can be used to decide if this series converges and then use it. (Hint: Use integration by parts to evaluate the integral.)
(b) Determine an explicit upper bound for the remainder R_{N} when estimating the series by the N th partial sum. Your answer will depend on N.
(c) Find an N for which the upper bound on R_{N} in part (c) is less than 0.2 , and then compute the N th partial sum s_{N}.
4. T/F (with justification): If $a_{n}=f(n)$ where $f(x)$ is continuous, positive, and decreasing for $x \geq 1$, and $\int_{1}^{\infty} f(x) d x$ converges then $\sum_{n=1}^{\infty} a_{n}=\int_{1}^{\infty} f(x) d x$.

[^0]: ${ }^{1}$ The integral test for $\sum_{n=1}^{\infty} f(n)$ is valid provided $f(x)$ is eventually decreasing, not necessarily decreasing for $x \geq 1$, so it's not important to verify $f(x)$ decreases on $[1, \infty)$ rather than $(1, \infty)$, although it does.

