Contents

1	Part	2: 7.1-7.4 Integra	ation Technique	s, 7.8 Improper Integrals	2
2	Part 3: 11.3 Integral Test and Estimates of Sum				
3	Part	4: 11.5 Alternati	ing Series and A	Alt. Ser. Estimation Thm	14
1. (Limit laws and L'Hospital's Rule Sec 4.4)					
	i.)	If $\lim_{x \to \infty} f(x) = 0$, th (a) zero	$\begin{array}{l} \displaystyle \lim_{x \to \infty} \left(x f(x) \right) \text{ is} \\ \displaystyle \text{(b) } \infty \end{array}$	c) non-zero constant	(d) another method is needed to determine this
		Solution: Answer: Not enough information. For example, $\lim_{x \to \infty} x\left(\frac{1}{x^2}\right) = 0$, $\lim_{x \to \infty} x\left(\frac{1}{x}\right) = 1$, $\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right) = 1$, $\lim_{x \to \infty} x\left(\frac{1}{\ln x}\right) = \infty$			
	ii.)	If $\lim f(x) = \infty$, then $\lim (f(x) - x)$ is			
		$ \begin{array}{c} x \to \infty \\ \text{(a) zero} \end{array} $	$(b) \infty$	(c) non-zero constant	(d) another method is needed to determine this
		Solution: Answe	er: Not enough in	formation. For example, $\lim_{x \to \infty} x$ –	$-x = 0$, $\lim_{x \to \infty} (x+1) - x = 1$, $\lim_{x \to \infty} x^2 - x = \infty$.
	iii.)	If $\lim_{x \to 0} f(x) = 0$, the (a) zero	en $\lim_{x \to 0} (f(x) - x)$ (b) ∞	is (c) non-zero constant	(d) another method is needed to determine this
		Solution: Answer: zero.			
	iv.)	If $\lim_{x \to 0} f(x) = \infty$ and (a) zero	d $\lim_{x \to 0} g(x) = \infty$, t (b) ∞	then $\lim_{x \to 0} (f(x) + g(x))$ is (c) non-zero constant	(d) another method is needed to determine this
		Solution: Answer: $\[\infty\]$			
	v.)	If $\lim_{x \to \infty} f(x) = 1$, th (a) zero	then $\lim_{x \to \infty} (f(x))^x$ is (b) ∞	с (с) 1	(d) another method is needed to determine this.
		Solution: Answe	er: not enough in	formation. For example, $\lim_{x \to \infty} \left(1 + \frac{1}{2} \right)$	$\left(+\frac{1}{x}\right)^x = e \text{ and } \lim_{x \to \infty} 1^x = 1.$
	vi.)	Evaluate $\lim_{x \to 1} \frac{\ln x}{x-1}$	and $\lim_{x \to \infty} \frac{e^x}{x^2}$.		
		Solution: 1 and ∞ . Sec 4.4 Example 1, pg 306 and Sec 4.4 Example 2, pg 306.			
	vii.)	Evaluate $\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$	and $\lim_{x \to 0} \frac{\tan x - x}{x^3}$; 	
		Solution: 0 an	d $\boxed{\frac{1}{3}}$. Sec 4.4 Exa	ample 3, pg 307 and Sec 4.4 Examp	ple 4, pg 307.

Solution:
$$\int_{1}^{2} t^{3} \ln(t) dt$$
 is a proper integral since neither t^{3} nor $\ln(t)$ has discontinuity on the interval [1,2].

(b) Evaluate
$$\int t^3 \ln(t) dt$$
 and $\int_1^2 t^3 \ln(t) dt$

Solution: Answer:
$$\boxed{\frac{1}{4}\left(t^{4}\ln\left(t\right)-\frac{t^{4}}{4}\right)+C}$$
 and $\boxed{\ln\left(16\right)-\frac{15}{16}}.$

(c) Perform either a proof or a reality check for the previous problem. For example, differentiate your answer (for a proof) or check that your definite integral is a positive number, since $t^3 ln(t)$ is positive for t > 1.

(d)
$$\int \frac{2x-3}{8+x^2} \, \mathrm{d}x$$

Solution: Answer: Draw a triangle and use inverse trig substitution. Then use u-substitution where $|u = \cos(\theta)|$ and

$$du = -\sin(\theta)$$
. Then you get $\int \frac{2x-3}{8+x^2} dx = \ln(x^2+8) - \frac{3}{2\sqrt{2}}\arctan\left(\frac{x}{2\sqrt{2}}\right) + C$

(e)
$$\int \frac{\sin(\ln(x))}{x} \, \mathrm{d}x$$

Solution: Answer: Use u-substitution with
$$u = \ln(x)$$
 and $du = \frac{1}{x} dx$. Then $\int \frac{\sin(\ln(x))}{x} dx = \boxed{-\cos(\ln(x)) + \text{Constant}}$.

(f) Is $\int_0^1 x \ e^{-x^2}$ a proper or improper integral?

Solution: $\int_0^1 x \ e^{-x^2}$ is a proper integral: Both $-x^2$ and e^x is continuous on [0, 1], so e^{-x^2} is also continuous on [0, 1], since the composition of continuous functions is continuous (reference: Sec 2.5 Theorem 9, pg 121). Since x is continuous on [0, 1]

and the product of continuous functions is continuous (reference: Sec 2.5 Theorem 4, pg 117), we conclude that $x e^{-x^2}$ is continuous on [0, 1] (and, in fact, everywhere - but this fact isn't relevant to this situation).

(g) Evaluate $\int_0^1 x \ e^{-x^2}$

Solution: Use u-sub with $u = -x^2$, $du = -2x \, dx$. Then $\int_0^1 x \, e^{-x^2} = -\frac{1}{2} e^u \Big|_0^{-1} = \boxed{\frac{1}{2}(1-e^{-1})}$.

(h) Perform a reality check for your answer to the previous problem.

Solution: A possible reality check: your answer should be positive because xe^{-x^2} is positive on the interval (0, 1].

(i) Evaluate $\int (x+2)\sin(3x) dx$

Solution: Answer: Integration by parts with u = x + 2 and $dv = \sin(3x) dx$. Then $\int (x+2)\sin(3x) dx = \left[-\frac{1}{3}(x+2)\cos(3x) + \frac{1}{9}\sin(3x) + \text{Constant}\right]$.

(j) Prove that your previous answer is correct by differentiating and applying the Fundamental Theorem of Calculus. (k) Evaluate $\int e^{\sqrt{x}} dx$

Solution: Answer: Do substitution with $w = \sqrt{x}$ and $dw = \frac{1}{2}x^{-\frac{1}{2}}$ dx. Then do integration by parts with u = w and $dv = e^w$ dx. Then $\int e^{\sqrt{x}} dx = 2we^w - 2\int e^w dw = 2we^w - 2e^w = \boxed{2\sqrt{x}e^{\sqrt{x}} - 2e^{\sqrt{x}} + C}$.

- (l) Prove that your previous answer is correct by differentiating and applying the Fundamental Theorem of Calculus.
- (m) Evaluate $\int \frac{x}{\sqrt{4-x^2}}$

Solution: Answer: You can do trig sub, but u-substitution may be faster. $\int \frac{x}{\sqrt{4-x^2}} = -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -u^{1/2} + C = \frac{1}{\sqrt{4-x^2}} = -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -u^{1/2} + C = \frac{1}{\sqrt{4-x^2}} = -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -\frac{1}{\sqrt{4-x^2}} + C = \frac{1}{\sqrt{4-x^2}} = -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -\frac{1}{\sqrt{4-x^2}} + C = \frac{1}{\sqrt{4-x^2}} = -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -\frac{1}{\sqrt{4-x^2}} + C = \frac{1}{\sqrt{4-x^2}} = -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -\frac{1}{\sqrt{4-x^2}} + C = \frac{1}{\sqrt{4-x^2}} = -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -\frac{1}{\sqrt{4-x^2}} + C = \frac{1}{\sqrt{4-x^2}} = -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -\frac{1}{\sqrt{4-x^2}} + C = \frac{1}{\sqrt{4-x^2}} = -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -\frac{1}{\sqrt{4-x^2}} + C = \frac{1}{\sqrt{4-x^2}} = -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -\frac{1}{\sqrt{4-x^2}} + C = \frac{1}{\sqrt{4-x^2}} = -\frac{1}{2} \int \frac{1}{\sqrt{u}} du = -\frac{1}{\sqrt{4-x^2}} + C = \frac{1}{\sqrt{4-x^2}} + C$

- (n) Prove that your previous answer is correct by differentiating and applying the Fundamental Theorem of Calculus.
- (o) Is $\int_0^9 \frac{1}{\sqrt{x}} dx$ an improper integral?

Solution: Yes, $\lim_{x\to 0^+} \frac{1}{\sqrt{x}} = \infty$, so $\frac{1}{\sqrt{x}}$ has an infinite discontinuity at 0.

(p) Determine whether $\int_0^{25} \frac{1}{\sqrt{x}} dx$ or $\int_0^{16} \frac{1}{\sqrt{x}} dx$ or $\int_0^9 \frac{1}{\sqrt{x}} dx$ is convergent or divergent. If it is convergent, evaluate the integral.

Solution: Answer: 5^{*2} or 4^{*2} or 3^{*2} .

(q) True of false? Let a > 0. $\int_0^a f(x) = \int_0^a f(a-x) \, dx$. If T, justify. If F, give a counterexample.

T F

Solution: Answer: True (Hint: use u-substitution
$$u = a - x$$
.)

(r) True of false? Let a > 0. $\int_0^a f(x) = \int_0^a f(x-a) \, dx$. If T, justify. If F, give a counterexample.

Solution: Answer: False in general. A possible counterexample: let f(x) = x. Then $\int_0^2 x \, dx = 2$ but $\int_0^2 (x-2) \, dx = -2$. Another possible counterexample: let f(x) = sin(x). Then $\int_0^{\pi} sin(x) \, dx = 2$ but $\int_0^{\pi} sin(x-\pi) \, dx = -2$. (Hint: use u-substitution u = x - a.)

 \mathbf{T}

 \mathbf{F}

- (s) Write a sanity-check-type calculation (different from what you've written above) to further confirm your answer in the previous two questions.
- 3. (From class handouts)
 - (a) Is the integral $\int_0^{\pi} \sin^3(5x) dx$ a proper or improper integral?

Solution: This is a proper integral because $\sin(5x)$ is continuous on $[0, \pi]$, and so $(\sin(5x))^3$ is also continuous on $[0, \pi]$.

(b) Evaluate
$$\int_0^{\pi} \sin^3(5x) dx$$

Solution: Thinking about the problem: To integrate a power like $\sin^3(5x)$, let's write $\sin^3 \theta$ in terms of lower powers. By the first trigonometric identity above, we can write $\sin^2 \theta = 1 - \cos^2 \theta$, so

$$\sin^3 \theta = \sin^2 \theta \sin \theta = (1 - \cos^2 \theta) \sin \theta.$$

Therefore (using $\theta = 5x$)

$$\int_0^\pi \sin^3(5x) \, dx = \int_0^\pi (1 - \cos^2(5x)) \sin(5x) \, dx.$$

Doing the problem:

After rewriting of the function being integrated, let's use the substitution $u = \cos(5x)$, so $du = -5\sin(5x) dx$:

$$\int (1 - \cos^2(5x)) \sin(5x) \, dx = \int (1 - u^2) \frac{-du}{5} = -\frac{1}{5} \int (1 - u^2) \, du.$$

Let's turn x-bounds into u-bounds in the definite integral:

$$x = 0 \Longrightarrow u = \cos(5 \cdot 0) = \cos 0 = 1, \quad x = \pi \Longrightarrow u = \cos(5\pi) = -1.$$

Therefore

$$\int_{0}^{\pi} \sin^{3}(5x) dx = \int_{x=0}^{x=\pi} (1 - \cos^{2}(5x)) \sin(5x) dx$$

= $-\frac{1}{5} \int_{u=1}^{u=-1} (1 - u^{2}) du$ (Note the order of integration)
= $\frac{1}{5} \int_{-1}^{1} (1 - u^{2}) du$ (Sign change in the order of integration)
= $\frac{1}{5} \left(u - \frac{u^{3}}{3} \right) \Big|_{-1}^{1}$
= $\frac{1}{5} \left(\left(1 - \frac{1}{3} \right) - \left(-1 - \frac{-1}{3} \right) \right)$
= $\frac{1}{5} \left(1 - \frac{1}{3} + 1 - \frac{1}{3} \right)$
= $\frac{1}{5} \left(2 - \frac{2}{3} \right)$
= $\left[\frac{4}{15} \right]$.

(c) Evaluate
$$\int \frac{dx}{\sqrt{9-x^2}}$$
.

Solution: Thinking about the problem:

Since the integrand involves $\sqrt{9-x^2}$ and there is not an extra factor of x in the numerator (if there were it might be possible to do a u-substitution with $u = 9 - x^2$), we will try a trigonometric substitution corresponding to a right triangle with a leg of length $\sqrt{9-x^2}$, hypotenuse 3, and the other leg has length x.

Doing the problem: Using the triangle diagram above,

$$\sin \theta = \frac{x}{3}$$
 where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$,

so $x = 3\sin\theta$. Then $dx = 3\cos\theta \,d\theta$. Also from the triangle $\cos\theta = \frac{\sqrt{9-x^2}}{3}$, so $\sqrt{9-x^2} = 3\cos\theta$. The integral becomes

$$\int \frac{dx}{\sqrt{9 - x^2}} = \int \frac{3\cos\theta}{3\cos\theta}$$
$$= \int d\theta$$
$$= \theta + C.$$

Since the substitution we used was $x = 3\sin\theta$, $\theta = \arcsin\left(\frac{x}{3}\right)$. So

$$\int \frac{dx}{\sqrt{9-x^2}} = \boxed{\arcsin\left(\frac{x}{3}\right) + C}$$

(d) Consider $\int_0^{\sqrt{2}} \frac{x^2}{\sqrt{4-x^2}} dx$, $\int_{-\sqrt{2}}^0 \frac{x^2}{\sqrt{4-x^2}} dx$, $\int_0^2 \frac{x^2}{\sqrt{4-x^2}} dx$ and $\int_{-2}^{\sqrt{2}} \frac{x^2}{\sqrt{4-x^2}} dx$. Which are proper integrals and which are improper integrals?

Solution: The function $\frac{x^2}{\sqrt{4-x^2}}$ is continuous on $[-\sqrt{2}, \sqrt{2}]$, so $\int_0^{\sqrt{2}} \frac{x^2}{\sqrt{4-x^2}} dx$ and $\int_{-\sqrt{2}}^0 \frac{x^2}{\sqrt{4-x^2}} dx$ are both proper integrals. The integrals $\int_0^2 \frac{x^2}{\sqrt{4-x^2}} dx$ and $\int_{-2}^{\sqrt{2}} \frac{x^2}{\sqrt{4-x^2}} dx$ are both improper integrals because the function $\frac{x^2}{\sqrt{4-x^2}}$ has infinite discontinuities at x = -2 and x = 2. $(\lim_{x \to 2^-} \frac{x^2}{\sqrt{4-x^2}} = \infty$ and $\lim_{x \to 2^+} \frac{x^2}{\sqrt{4-x^2}} = \infty)$.

(e) Evaluate $\int_0^{\sqrt{2}} \frac{x^2}{\sqrt{4-x^2}} dx.$

Solution: Thinking about the problem: Since the integrand involves $\sqrt{4-x^2}$ and there is not just a factor of x in the numerator (otherwise we can do a u-substitution with $u = 4 - x^2$), we try a trigonometric substitution with a triangle with a side of length $\sqrt{4-x^2}$, hypotenuse 2, and the other side has length x.

Doing the problem: See Example B from Week 6 day 2 Section 7.3 notes: https://www.dropbox.com/s/l0cwr7rtly8xncp/week6d2_worksheet7_3trig_sub_pages1_and_3.pdf?dl=0 (f) Without explicitly trying to evaluate this integral, determine whether it is possible for $\int_0^\infty x^2 e^{-x} dx$ to be convergent to a negative value.

Solution: It is not possible because $x^2 e^{-x} \ge 0$ for all $x \ge 0$. See sketch in the solution of the next part.

(g) Is $\int_0^\infty x^2 e^{-x} dx$ convergent or divergent? If convergent, evaluate it.

Solution: Thinking about the problem:
The integral is
$$\lim_{t \to \infty} \int_0^t x^2 e^{-x} dx$$
 and the graph of $y = x^2 e^{-x}$ is below. We will compute $\int_0^t x^2 e^{-x} dx$ and see how it behaves as $t \to \infty$.

$$y = x^2 e^{-x}$$
To evaluate $\int_0^t x^2 e^{-x} dx$ we will use integration by parts.
Doing the problem:
To evaluate $\int_0^t x^2 e^{-x} dx$ we will use integration by parts set u and du to be as in the chart below, and then compute du and v .

$$\frac{u = x^2}{\left[\frac{du}{du} = 2x dx \right]} \frac{dv = e^{-x} dx}{v} = -e^{-x} dx}$$
Thus $\int_0^t x^2 e^{-x} dx = uv \Big|_0^t - \int_0^t v du = -x^2 e^{-x} \Big|_0^t + \int_0^t 2x e^{-x} dx = -\frac{e^2}{e^t} + 2\int_0^t x e^{-x} dx$. We work out the new integral also using integration by parts, starting with the chart below.

$$\frac{u = x}{\left[\frac{du}{du} = 2x dx \right]} \frac{dv = e^{-x} dx}{v = -e^{-x}}$$
Thus $\int_0^t x e^{-x} dx = -x e^{-x} \Big|_0^t + \int_0^t 2x e^{-x} dx = -\frac{t}{e^t} + 2\int_0^t x e^{-x} dx$. We work out the new integral also using integration by parts, starting with the chart below.

$$\frac{u = x}{\left[\frac{du}{du} = \frac{dv}{v} = -e^{-x} dx\right]}$$
Thus $\int_0^t x^2 e^{-x} dx = -x e^{-x} \Big|_0^t + \int_0^t 2x e^{-x} dx = -\frac{t}{e^t} - e^{-x} \Big|_0^t = -\frac{t}{e^t} - \frac{1}{e^t} + 1$, so returning to the initial calculation we have
 $\int_0^t x^2 e^{-x} dx = -\frac{t^2}{e^t} + 2\int_0^t x e^{-x} dx = -\frac{t^2}{e^t} + 2\left(-\frac{t}{e^t} - \frac{1}{e^t} + 1\right) = -\frac{t^2}{e^t} - \frac{2t}{e^t} - \frac{2}{e^t} + 2$.
Letting $t \to \infty$, $\int_0^\infty x^2 e^{-x} dx = \lim_{t \to \infty} \left(-\frac{t^2}{e^t} - \frac{2}{e^t} - \frac{2}{e^t} + 2\right) = 0 - 0 - 0 + 2$ by L'Hospital's rule (used twice for the first expression). Thus $\int_0^\infty x^2 e^{-x} dx = 2$: the improper integral is convergent and equals 2.
(h) (Note: You may use the fact sheets to look up derivatives and integrals of trig functions)
Evaluate 1.) $\int_0^{\frac{5}{2}} \sin^5 x \, dx$ or 2.) $\int \frac{\cos^5 x}{\sin^2 x} \, dx$ or 3.) $\int_0^\pi \cos^4(2x) \, dx$ or

4.)
$$\int \sin^3 x \cos^5 x \, dx$$
 or 5.) $\int \sin^2 x \cos^2 x \, dx$ or 6.) $\int \tan^3 x \sec^3 x \, dx$ or
7.) $\int \tan^2 x \sec^4 x \, dx$ or 8.) $\int_0^{\frac{\pi}{4}} \sec^4 x \, dx$ or 9.) omitted or 10.) $\int \tan^3 x \sec^4 x \, dx$.

Solution: https://egunawan.github.io/spring18/notes/hw7_2key.pdf

(i) Evaluate 1.)
$$\int \frac{1}{x\sqrt{4-x^2}} \, dx$$
 or 2.) $\int \frac{1}{\sqrt{x^2+16}} \, dx$ or 3.) $\int_{\sqrt{2}}^2 \left(\frac{1}{x^3\sqrt{x^2-1}}\right) \, dx$ or
4.) $\int_0^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{1+\sin^2 x}} \, dx$ or 5.) $\int_0^1 \left(\frac{1}{\sqrt{-x^2+2x+3}}\right) \, dx$ (Hint: First complete the square) or
6.) $\int \frac{1}{\sqrt{1+16x^2}} \, dx$ or 7.) $\int_0^{\sqrt{2}} \frac{x^2}{\sqrt{4-x^2}} \, dx$ or 8.) $\int \frac{1}{x^2\sqrt{9x^2-1}} \, dx$ or

9.)
$$\int \sqrt{5 + 4x - x^2} \, dx. \text{ (ituit: First complete the square)}$$
Solution: https://egunawan.github.io/spring18/notes/hw7_23key.pdf
(j) 1.) Evaluate
$$\int \ln \left(x + \sqrt{1 + x^2}\right) \, dx \quad \text{or} \quad 2.) \int x \, \tan^2 x \, dx \quad \text{or} \quad 3.) \int \cos(\sqrt{x}) \, dx \quad \text{or}$$
4.) Evaluate
$$\int x^2 (\ln x)^2 \, dx \quad \text{or} \quad 5.) \text{ omitted} \quad \text{or} \quad 6.) \int \cos(\ln x) \, dx \quad \text{or}$$
7a.) How can you derive the formula for Integration by Parts? or
7b.) Evaluate
$$\int_0^{\frac{1}{2}} x \cos(2x) \, dx \quad \text{or}$$
7c.) Suppose $f(1)=2, f(4)=7, f'(1)=5, f'(4)=3$. Suppose f'' is continuous. Evaluate
$$\int_1^4 x \, f''(x) \, dx$$
or 7d.) Evaluate $\int \arctan x \, dx \quad \text{or} \quad 7e.) \int e^x \cos x \, dx \quad \text{or}$
7f.) A particle that moves along a straight line has velocity $v(t) = t^3 e^{-t}$ meters per second after t seconds. How far will it travel during the first t seconds?
Solution: https://egunawan.github.io/spring18/notes/hw7_1key.pdf
(k) Evaluate $\int_0^\infty e^{-2x} \, dx \quad \text{or} \quad 2.) \int_1^\infty \frac{1}{\sqrt{x}} \, \text{or} \quad 3.) \int_1^\infty \sin^2 x \, dx \quad \text{or} \quad 4.) \int_1^\infty \frac{1}{x^2 + 2x - 3} \, dx.$
Solution: https://egunawan.github.io/spring18/notes/LA7_spart1key.pdf
(i) 1.) Evaluate $\int_0^8 \frac{1}{\sqrt{x}} \, dx \quad \text{or} \quad 2.)$ Evaluate $\int_1^\infty \frac{x}{x^3 + 1} \, dx.$
Solution: https://egunawan.github.io/spring18/notes/LA7_spart2key.pdf
(integrating rational functions)
(a) Evaluate $\int \frac{2x + 1}{x^2 - 4} \, dx.$

Solution: Note: It is also possible to evaluate this using the trig substitution method, but the following will walk you through the Partial Fraction Decomposition method.

4.

Thinking about the problem: The integrand $\frac{2x+1}{x^2-4}$ is a rational function and does not look like it can be handled with substitution, so we use partial fractions. The denominator $x^2 - 4$ is (x+2)(x-2), a product of different linear factors, so the partial fraction decomposition of $\frac{2x+1}{x^2-4}$ is $\frac{A}{x+2} + \frac{B}{x-2}$ for some constants A and B. After solving for A and B we would have $\int \frac{2x+1}{x^2-4} dx = \int \frac{A}{x+2} dx + \int \frac{B}{x-2} dx$ and can integrate the right side. Doing the Problem: Writing $\frac{2x+1}{x^2-4} = \frac{A}{x+2} + \frac{B}{x-2}$, solve for A and B by multiplying both sides by the denominator $x^2 - 4$: 2x + 1 = A(x-2) + B(x+2). Setting x = 2, we find $2(2) + 1 = 5 = A(0) + B(2+2) = 4B \Rightarrow 5 = 4B \Rightarrow B = \frac{5}{4}$. Setting x = -2, we find $2(-2) + 1 = A(-2-2) + B(0) \Rightarrow -3 = -4A \Rightarrow A = \frac{3}{4}$.

Therefore
$$\frac{2x+1}{x^2-4} = \frac{3/4}{x+2} + \frac{5/4}{x-2}$$
, so
$$\int \frac{2x+1}{x^2-4} dx = \frac{3}{4} \int \frac{dx}{x+2} + \frac{5}{4} \int \frac{dx}{x-2}$$
$$= \boxed{\frac{3}{4} \ln|x+2| + \frac{5}{4} \ln|x-2| + C}.$$

(b) Decompose $\frac{3x^2 + 2x - 3}{x^3 - x}$ into partial fractions.

(c) Provide a computation that is either a formal verification (that is, a proof) or simply a reality-check for your answer to the previous question.

Solution: For example, you can rewrite your result as one fraction and check that it's equal to $\frac{3x^2 + 2x - 3}{x^3 - x}$

(d) Evaluate $\int \frac{10}{(x+5)(x-2)} \, \mathrm{d}x.$

Solution: Answer:
$$\boxed{\frac{10}{7} \left(\ln(x-2) - \ln(5+x) \right)} + C$$

(e) Provide a computation that is either a formal verification (that is, a proof) or simply a sanity-check for your answer to the previous question.

Solution: For example, you can check that the derivative of your result is equal to $\frac{10}{(x+5)(x-2)}$.

(f) Evaluate
$$\int \frac{9}{(x-6)(x+3)} \, dx$$
 or $\int \frac{12}{(x-2)(x+1)} \, dx$ or $\int \frac{8}{(x-1)(x+3)} \, dx$.

Solution: Answer: After applying partial fraction decomposition, the integrand is equal to $\frac{1}{x-6} - \frac{1}{x+3}$ or $\frac{4}{x-2} - \frac{4}{x+1}$ or $\frac{2}{x-1} - \frac{2}{x+3}$. The antiderivative is $\ln \left| \frac{x-6}{x+3} \right| + C$ or $4\ln \left| \frac{x-2}{x+1} \right| + C$ or $2\ln \left| \frac{x-1}{x+3} \right| + C$.

5. (a) Sketch the graph of the function and shade the region whose area is represented by the integral below. Label all pertinent information. Do not evaluate.

$$\int_{-3}^{4} (2x+15) - x^2 \, \mathrm{dx}$$

Solution: Answer: https://www.desmos.com/calculator/vem9dirors.

(b) Consider the region bounded by $y = x^2$, $y = 2 - x^2$.

i. Find the intersection points of the two curves.

Solution: Answer: -1 and 1

ii. Sketch the two curves and shade the region bounded by the two curves.

iii. Set up, but **do not evaluate** an integral for the area of the shaded region.

Solution: Answer:
$$\int_{-1}^{1} 2 - 2x^2 dx$$
(c) For your convenience, the graph of $y = \sin(x)$ is shown.
Set up the definite integral for the area of the region bounded by the curves $y = \sin(x)$, $y = 0$, $x = 0$ and $x = \frac{\pi}{2}$. Then evaluate the area.
Solution: Answer: area = 1.

6. Write down the first key step/s of evaluating the following the integrals (There often are more than one right answer). You don't need to evaluate the integrals.

(a)
$$\int_0^4 \frac{\ln(x)}{\sqrt{x}} \, \mathrm{dx}$$

e

Solution: Answer: Integration by parts with $u = \ln(x)$ and $dv = \frac{1}{\sqrt{x}}$.

(b) $\int \frac{1}{x \ln(x)} \, \mathrm{d}x$

Solution: Answer: u-substitution for $\ln(x)$. At the end you should get $\ln(\ln(x))$ + Constant

(c)
$$\int_1^2 \ln(x) \, \mathrm{d}x$$

Solution: Integration by parts with (the only option) $u = \ln(x)$ and dv = dx

(d) $\int x e^{0.2x} dx$

Solution: Integration by parts with u = x and $dv = e^{0.2x} dx$

(e)
$$\int_0^1 e^x \sin(x) \, \mathrm{dx}$$

Solution: Integration by parts with either $u = e^x$ and $dv = \sin(x) dx$ OR $dv = e^x dx$ and $u = \sin(x)$. Then repeat.

(f)
$$\int \frac{1}{x^2 + 2x + 4} \, \mathrm{dx}$$

Solution: Complete the square to get $\int \frac{1}{(x+1)^2+3} dx$, then use inverse trig substitution with $x+1 = \sqrt{3} \tan(\theta)$ (fewer negative signs to work with) or $x+1 = \sqrt{3} \cot(\theta)$

7. (Improper integrals Sec 7.8)

- (a) When is an integral improper? Hint: There are two kinds. Copy definitions from Sec $7.8\ pg\ 527$ and 531.
- (b) When is an integral proper? (When it is not improper, but explain what needs to happen for a definite integral to be proper).
- (c) True or False, and why? Let f(x) be continuous everywhere. $\int_{a}^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \, dx$ **T F**

Justification:

Solution: Answer: True, by definition

(d) True or False, and why? Let f(x) be continuous everywhere. $\int_{a}^{\infty} f(x) dx = \lim_{a \to \infty} \int_{a}^{t} f(x) dx$ **T F**

Justification:

Solution: Answer: False, by definition(e) True or False, and why? The integral
$$\int_{2}^{3} \sqrt{x-2} dx$$
 is improper. $\mathbf{T} = \mathbf{F}$ Solution: Answer: False, The function $\sqrt{x-2}$ is continuous on [2, 3].(f) True or False, and why? $\int_{0}^{1} \frac{27}{x^{5}} dx$ is improper. $\mathbf{T} = \mathbf{F}$ Solution: Answer: True.The function $\frac{27}{x^{5}}$ has an infinite discontinuity at 0 since $\lim_{x\to 0} \frac{27}{x^{5}}$ does not exist. $\lim_{x\to 0^{+}} \frac{27}{x^{5}} = \infty$ (g) Evaluate $\int_{0}^{1} \frac{27}{x^{5}} dx$ Solution: Answer: $\lim_{a\to 0^{+}} \int_{a}^{1} \frac{27}{x^{5}} = \infty$. The integral diverges.(h) True or False? $\int_{-1}^{1} \frac{1}{x} dx$ is improper. $\mathbf{T} = \mathbf{F}$ Solution: Answer: $[True]$. The function $\frac{1}{x}$ has an infinite discontinuity at 0 since $\lim_{x\to 0} \frac{1}{x}$ does not exist. $\lim_{x\to 0^{+}} \frac{1}{x} = \infty$.(i) Evaluate $\int_{-1}^{1} \frac{1}{x} dx$

Solution: Answer:
$$\int_{0}^{1} \frac{1}{x} dx = \lim_{x \to y^{-}} \int_{0}^{1} \frac{1}{x} = \infty.$$
 [The integral diverges]

 (i) Determine whether $\int_{0}^{1} 9x^{2} \ln (x) dx$ converges or diverges. If it converges, evaluate it.

 Solution: Answer: -1

 (k) Evaluate $\int_{0}^{8} \frac{4}{x\sqrt{x^{2}-16}} dx$ OR $\int_{-7}^{7} \frac{1}{\sqrt{49-x^{2}}} dx$. If it converges, evaluate it.

 Solution: Answer: -1

 (k) Evaluate $\int_{0}^{8} \frac{4}{x\sqrt{x^{2}-16}} dx$ OR $\int_{-7}^{7} \frac{1}{\sqrt{49-x^{2}}} dx$. If it converges, evaluate it.

 Solution: Answer: -1

 (ii) Determine whether $\int_{x}^{\infty} \frac{1}{x(\ln x)^{3}} dx$ converges or diverges. If it converges, evaluate the integral.

 Solution: Answer: 1/2

 (m) Determine whether $\int_{x}^{\infty} \frac{1}{x^{2} + 8x - 9} dx$ is convergent, evaluate it.

 Solution: Answer: $1/(5 10^{5})$

 (a) Determine whether $\int_{x}^{\infty} \frac{1}{x^{2} + 8x - 9} dx$ is convergent or divergent. If it is convergent, evaluate it.

 Solution: Use partial fraction decomposition (probably faster) or complete the square + trig substitution (probably longor). Answer: $\overline{\ln(11)/10}$

 (a) Determine whether $\int_{0}^{1} \frac{4}{x^{0.5}} dx$ is convergent or divergent. If it is convergent, evaluate it.

 Solution: Answer: $\overline{\mathbb{I}(11)/10}$

 (b) Determine whether $\int_{0}^{1} \frac{4}{x^{0.5}} dx$ is convergent or divergent. If it is convergent, evaluate it.

 Solution: Answer: $\overline{\mathbb{I}(11)/10}$

 (c) Determine whether $\int_{2}^{1} \frac{2}{\sqrt{3-x}} dx$ is convergent or divergent. If it is convergent, evaluate it.

(t) Write 2 indefinite integrals.

2 Part 3: 11.3 Integral Test and Estimates of Sum

- 8. Suppose f is a continuous, positive, and decreasing function on $[1, \infty)$. Suppose $a_k = f(k)$ for $k = 1, 2, 3, \ldots$
 - (a) Draw pictures for illustrating the quantities of each of the following. $\int_{1}^{6} f(x) \, dx$ $\sum_{k=2}^{6} a_k$ $\sum_{k=1}^{5} a_k$.
 - (b) Then rank the three quantities in increasing order.
 - (c) What are the conditions needed to apply the Integral Test ?

Solution: From pages 1-2 of https://www.dropbox.com/s/h4khh34xeyvr126/week7d3_notes11_3part1.pdf?dl=0

9. Determine whether
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^5}$$
 converges or diverges.

a. Explain why the integral test can be applied.

Solution: Let $f(x) = \frac{1}{x(\ln x)^5}$. Then f(x) is continuous and positive on for $x \ge 2$. It is also decreasing on $[2, \infty)$ since $x(\ln x)^5$ is a product of increasing functions on $[2, \infty)$. Thus we can use the integral test.

b. Let b > 2. Evaluate $\int_2^b \frac{1}{x(\ln x)^5}$.

Solution: Use u-substitution $u = \ln(x)$.

c. Evaluate $\int_2^\infty \frac{1}{x(\ln x)^5}$.

Solution: Use u-substitution $u = \ln(x)$.

d. Apply the integral test to determine whether $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^5}$ converges or diverges.

Solution: Since $\int_2^\infty \frac{dx}{x(\ln x)^5}$ converges by part (c), we conclude by the integral test that $\sum_{n=2}^\infty \frac{1}{n(\ln n)^5}$ also converges.

10. Consider the series $\sum_{n=1}^{\infty} \frac{n}{3^n}$.

a. Verify that the integral test *can* be used to decide if this series converges.

Solution:

Let $f(x) = x/3^x$. We will show that f(x) is positive, continuous, and decreasing on $[1, \infty)$.

This function is positive and continuous for $x \ge 1$ since x is a polynomial, 3^x is an exponential function, and 3^x is never 0 on $[1, \infty)$.

To show that f(x) is decreasing on $[1,\infty)$, compute $f'(x) = \frac{1-x\ln 3}{3^x}$, which implies f'(x) < 0 for $x > \frac{1}{\ln 3}$. Since $\ln 3 > \ln e = 1$, we have $\frac{1}{\ln 3} < 1$, so f'(x) < 0 for $x \le 1$. This justifies the use of the integral test on $\sum_{n=1}^{\infty} \frac{n}{3^n}$.

b. Apply the Integral Test (or another test if you prefer) to prove that this series converges.

Solution: compute $\int \frac{x}{3^x} dx$, try integration by parts: either $\boxed{u = x \text{ and } dv = dx/3^x = 3^{-x} dx}$ or $\boxed{u = dx/3^x = 3^{-x} \text{ and } dv = xdx}$. You should get $\int_1^\infty \frac{x}{3^x} dx = \lim_{b \to \infty} \left(-\frac{b}{3^b \ln 3} - \frac{1}{3^b (\ln 3)^2} + \frac{1}{3 \ln 3} + \frac{1}{3(\ln 3)^2} \right).$ Since $\lim_{b \to \infty} b/3^b = 0$ by L'Hospital's Rule and $\lim_{n \to \infty} 1/3^b = 0$, $\int_1^\infty \frac{x}{3^x} dx = \frac{1}{3 \ln 3} + \frac{1}{3(\ln 3)^2}.$ Since $\int_1^\infty \frac{x}{3^x} dx$ converges, the series $\sum_{n=1}^\infty \frac{n}{3^n}$ also converges by the Integral Test.

c. Determine an explicit upper bound for the remainder R_N when estimating the series by the Nth partial sum. Your answer will depend on N.

Solution: The Nth remainder R_N is at most $\int_N^\infty \frac{x}{3^x} dx = \lim_{b \to \infty} \int_N^b \frac{x}{3^x} dx = \frac{N \ln 3 + 1}{3^N (\ln 3)^2}$. See Week 7 day 3 notes https://www.dropbox.com/s/phe1v0p04z9q5xv/week7d3_notes11_3part2_plus_hw11_3problem3.pdf?dl=0 (end of file)

d. Find an N for which the upper bound on R_N in part (c) is less than 0.2, and then compute the Nth partial sum s_N to 5 digits after the decimal point.

Solution: See Week 7 day 3 notes https://www.dropbox.com/s/phe1v0p04z9q5xv/week7d3_notes11_3part2_plus_hw11_3problem3.pdf?dl=0 (end of file)

- 11. (Integral Test from 11.3 WebAssign)
 - (a) Find the values of p for which the integral $\int_{e}^{\infty} \frac{6}{x(\ln x)^{p}} dx$ converges. Evaluate the integral for these values of p. (Hint: Check what happens when p = 1, when p < 1, and when p > 1.)

Solution: Answer: p > 1 converges. Otherwise, diverges.

(b) Evaluate the integral $\int_{1}^{\infty} \frac{3}{x^{6}} dx$. Are the conditions for the Integral Test satisfied? If so, use the Integral Test to determine whether the series $\sum_{1}^{\infty} \frac{3}{n^{6}}$ is convergent or divergent.

Solution: Answer: = 3/5

(c) Evaluate the integral $\int_{1}^{\infty} \frac{1}{(4x+2)^3} \, dx$. Are the conditions for the Integral Test satisfied? If so, use the Integral Test to determine whether the series $\sum_{n=1}^{\infty} \frac{1}{(4n+2)^3}$ is convergent or divergent.

(e) Evaluate the integral

$$\int_{1}^{\infty} x \ e^{-9x} \ \mathrm{dx}$$

Are the conditions for the Integral Test satisfied? If so, use the Integral Test to determine whether the series $\sum_{1} ne^{-9n}$ is convergent or divergent.

Solution: Answer: $10/81e^9$

(f) The following statement is false: "If $a_n = f(n)$ where f(x) is continuous, positive, and decreasing for $x \ge 1$, and $\int_{1}^{\infty} f(x) dx$

converges then $\sum_{n=1}^{\infty} a_n = \int_1^{\infty} f(x) dx$." Give a counterexample by coming up with a continuous, positive, and decreasing f(x) on $[1,\infty)$ and computing both $\sum_{n=1}^{\infty} a_n$ (where $a_n := f(n)$) and $\int_1^{\infty} f(x) dx$, showing that they are not equal. (Hint: you know how to compute precisely the sum of any convergent geometric series).

Solution: Counterexample: Let $f(x) = \frac{1}{2^x}$. The sum of the series $\sum_{n=0}^{\infty} \frac{1}{2^n}$ is $\frac{1}{1-\frac{1}{2}} = 2$ (think the infinite mathematicians joke), so $\sum_{n=1}^{\infty} \frac{1}{2^n} = 2 - 1 = 1$, while $\int_1^{\infty} \frac{dx}{2^x} = \lim_{b \to \infty} \left(\frac{1}{2^x(-\ln 2)} \Big|_1^b \right) = \frac{1}{2\ln 2} \neq 1$.

3 Part 4: 11.5 Alternating Series and Alt. Ser. Estimation Thm

(Hint: The theorems from Sec 11.5 are given in the fact sheet. See also notes from Week 8 Monday, Sec 11.5 part 2)

12. Consider the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$. Recall that the symbol 0! means the number 1.

(a) Determine whether the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ converges or diverges.

Solution: Answer: Sec 11.5, Example 4 on page 735.

(b) Let $b_n = \frac{1}{n!}$. Your computing tool has computed for you $b_7 = \frac{1}{5040}$. What N do you need to use so that the partial sum S_N is correct (to the actual sum of $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$) to three decimal places? Translation: we want $|S_N - S| < 0.0005$.

Solution: Answer: <u>N=6</u>. Alternating Estimation Theorem tells you that $S - S_6 \leq b_7$, and I've computed for you $b_7 = \frac{1}{5040}$. Since $b_7 = \frac{1}{5040} < \frac{2}{10000} = 0.0002 < 0.0005$, we know that we only need to compute the partial sum $S_6 = \sum_{n=0}^{6} \frac{(-1)^n}{n!}$. More detailed explanation in Sec 11.5, Example 4 on page 735.

- 13. For the following questions, circle TRUE or FALSE. Justify briefly.
 - (a) Suppose $b_k > 0$ for all k and $\sum_{k=1}^{\infty} (-1)^k b_k$ is a convergent with sum S and partial sum S_n . Then $|S S_5| \le b_6$. **T F**

Solution: Answer: True, by the Alternating Series Estimate Theorem

(b) Suppose $b_k > 0$ for all n and $\sum_{k=1}^{\infty} (-1)^k b_k$ is a convergent with sum S and partial sum S_n . Then $|S - S_5| \ge b_6$. **T F**

Solution: Answer: False. The Alternating Series Estimate Theorem states that the inequality should go the other way.

- 14. Consider the series $\sum_{\substack{n=2\\\text{the theorems on the exam's fact sheet).}}^{\infty}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$. Circle all true statement/s and cross out all false statement/s. (Hint: See
 - a. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ converges.

Solution: $[\underline{\text{True}}]$ by the Alternating Series Test. Thinking about the problem: The series starts off as $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ and is alternating with $b_n = \frac{1}{2n-1}$. We will check the conditions for the Alternating Series Test. Doing the problem: For $b_n = \frac{1}{2n-1} > 0$ we need to check $b_{n+1} \leq b_n$ for all n and $b_n \to 0$ as $n \to \infty$. The inequality $b_{n+1} \leq b_n$ is the same as $\frac{1}{2n+1} \leq \frac{1}{2n-1}$, which is equivalent to saying $2n+1 \geq 2n-1$, and that last inequality is true. Alternatively, using calculus, the function $f(x) = \frac{1}{2x-1}$ has derivative $f'(x) = -\frac{2}{(2x-1)^2}$, which is negative for $x \geq 1$, so f(x) is decreasing for $x \geq 1$. For the limit, $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{1}{2n-1} = 0$. We can now use the Alternating Series Test to conclude that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ converges.

b. The series $\sum_{n=2}^{\infty} (-1)^n \frac{1}{n^3}$ converges.

Solution: <u>True</u> by the Alternating Series Test. *Thinking about the problem:*

The series is alternating with $b_n = \frac{1}{n^3}$. We will check the conditions for the Alternating Series Test.

Doing the problem: For $b_n = \frac{1}{n^3} > 0$ we need to check $b_{n+1} \le b_n$ for all n and $b_n \to 0$ as $n \to \infty$. The inequality $b_{n+1} \le b_n$ is the same as $\frac{1}{(n+1)^3} \le \frac{1}{n^3}$, which is equivalent to saying $n+1 \ge n$, and that last inequality is true. Alternatively, using calculus, the function $f(x) = \frac{1}{x^3}$ has derivative $f'(x) = -\frac{3}{x^4}$, which is negative for $x \ge 2$, so f(x) is decreasing for $x \ge 2$. For the limit, $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{1}{n^3} = 0$. We can now use the Alternating Series Test to conclude that $\sum_{n=2}^{\infty} \frac{(-1)^n}{n^3}$ converges.

c. Suppose $S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ and $S_{1000} := \sum_{n=1}^{1000} \frac{(-1)^{n-1}}{2n-1}$, $S_{1001} := \sum_{n=1}^{1001} \frac{(-1)^{n-1}}{2n-1}$ are partial sums, as usual. Then is the following True or False, and why?

$$S_{1000} < S < S_{1001}.$$

Solution: True. Explanation: Every alternating series whose terms in absolute value satisfy $b_{n+1} < b_n$ lies in between consecutive partial sums. See Sec 11.5, Figs. 1 and 2, pg 733-734. Thus S is between S_{1000} and S_{1001} . The first term of $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(-1)^{n-1}}{2n-1}$ is positive, so $S_{1000} < S < S_{1001}$.

d. Suppose $S = \sum_{n=2}^{\infty} (-1)^n \frac{1}{n^3}$ and $S_{1000} := \sum_{n=2}^{1000} (-1)^n \frac{1}{n^3}$, $S_{1001} := \sum_{n=2}^{1001} (-1)^n \frac{1}{n^3}$ are partial sums, as usual. Then is the following True or False, and why?

$$S_{1000} < S < S_{1001}.$$

Solution: True. Explanation: Every alternating series whose terms in absolute value satisfy $b_{n+1} < b_n$ lies in between consecutive partial sums. See Sec 11.5, Figs. 1 and 2, pg 733-734. Thus S is between S_{1000} and S_{1001} . The first term of $\sum_{n=2}^{\infty} (-1)^n \frac{1}{n^3}$ is positive, so $S_{1000} < S < S_{1001}$.