Sections 11.1-11.2, 11.4-11.6

1. For the following questions, circle TRUE or FALSE, and give a justification. True statements should be argued for using facts, theorems or definitions from class.
(a) If $\lim _{n \rightarrow \infty} a_{n}=0$ then the series $\sum a_{n}$ converges.

Justification:

(b) If $a_{n}>0, b_{n}>0$ for all $n, \sum b_{n}$ diverges, and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, then $\sum a_{n}$ diverges. T \quad F

Justification:
(c) If $a_{n}>0$ for all $n \& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0$, then $\sum a_{n}$ is convergent by the ratio test

Justification:

(d) If a_{n} and b_{n} are both positive for all n and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, then $\sum a_{n}$ is convergent by the limit comparison test $\mathbf{T} \quad$ F Justification:
(e) The harmonic series $\sum 1 / n$ is convergent by the p-series test T \quad F Justification:
(f) We can use the ratio test alone to show the geometric series $\sum \frac{2^{n}}{3^{n}}$ converges T \quad F Justification:
(g) We can use the p-series test alone to show the series $\sum 2^{n} / 3^{n}$ converges
(h) We can apply the monotonic sequence theorem to show that the geometric sequence $\left\{2^{n} / 3^{n}\right\}_{n=1}^{\infty}$ is convergent \mathbf{T} F

Justification:

(i) We can apply the monotonic sequence theorem to show that the harmonic sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ is convergent $\quad \mathbf{T} \quad \mathbf{F}$ Justification:
(j) We can apply the squeeze theorem to show that the alternating harmonic sequence $\left\{\frac{(-1)^{n}}{n}\right\}$ is convergent $\mathbf{T} \quad \mathbf{F}$ Justification:
(k) It is impossible for a subset of a line to have infinitely many points and have length zero. T Justification:

1) The divergence of the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for $0<p<1$ follows from divergence of the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ and the comparison test.

T \quad F
Justification:
(m) The convergence of the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for $p>1$ follows from divergence of the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ and the comparison test. T \quad F Justification:
(n) Convergence of $\sum \frac{1}{n^{p}}$ for $p>1$ can be shown with the ratio test.
(o) Divergence of a p-series for $p<1$ can be shown with the ratio test.
2. (a) State the contrapositive of the factual statement: "If the sequence $\left\{a_{n}\right\}$ is unbounded, then it is divergent".
(b) Is the contrapositive statement you wrote as your answer to part (a) true or false? Justification (explain or give a counterexample):
(c) The converse of part (a) is the following: "If the sequence $\left\{a_{n}\right\}$ is divergent, then $\left\{a_{n}\right\}$ is unbounded". Is this true or false? Justification (explain or give a counterexample):
3. Answer the following on the line provided.
(a) What is the 100 th term of the sequence $\{2,5,8,11, \ldots\}$?
(The terms 2 and 5 are the first and second term, respectively)
(b) Find a formula for the general term a_{n} of the sequence $\left\{1,-\frac{2}{5}, \frac{3}{25},-\frac{4}{125}, \frac{5}{625} \ldots\right\}$. Make sure to specify your starting value of n.
(c) Write the geometric series $4+2+1+\frac{1}{2} \cdots$ in standard form.
(summation notation \sum)
(d) Find the 4 th term a_{4} in the recursive sequence $a_{n+1}=2 a_{n}+a_{n-1}$ when $a_{1}=1$ and $a_{2}=1$.
(e) Find the 7 th term a_{7} in the recursive sequence $a_{n+1}=a_{n}+a_{n-1}$ when $a_{1}=2$ and $a_{2}=3$.
(f) We can use geometric series to compute

$$
\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\ldots
$$

What fraction is this equal to?
(g) We can use geometric series to compute $0.9999 \ldots$ What fraction is this equal to?
(h) One of the two decimal expansions for a number is $2.449999 \ldots$ What's the other?
(i) Use geometric series to compute the fraction for $1.833333 \ldots$

Perform a sanity check against your answer.
(j) Use geometric series to compute the fraction for $1.08333333333333333 \ldots$

Perform a sanity check against your answer.
(k) Does the series $\sum_{n=1}^{\infty}-\ln \left(\frac{n}{2 n+7}\right)$ converge or diverge?
(l) Find the sum of the series $\sum_{k=0}^{\infty} 5\left(\frac{2}{3}\right)^{k}$.
(m) Find the sum of the series $\sum_{n=2}^{\infty} 5\left(\frac{(-6)^{n-1}}{7^{n}}\right)$.

Perform a sanity check against your answer.
(n) Find the sum of the series

$$
-5+3-\frac{9}{5}+\frac{27}{25}-\frac{81}{125}+\ldots
$$

Perform a sanity check against your answer.
(o) Write an expression for the nth term in the sequence
$\left\{\frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots\right\}$. (The terms $\frac{1}{2}$ and $\frac{1}{6}$ are the first and second terms in the sequence)
(p) Write an equivalent series with index summation beginning at $n=0$.
$\sum_{n=2}^{\infty} \frac{2^{n}}{(n-2)!}$
Perform a sanity check against your answer.
(q) Write an equivalent series with index summation beginning at $n=1$.
$\sum_{n=2}^{\infty} \frac{2^{n}}{(n-2)!}$
Perform a sanity check against your answer.
(r) For what values of k does the series $\sum \frac{5}{n^{k}}$ converge? Please explain.
(s) Find the values of A so that the series $\sum_{n=1}^{\infty} \frac{(A)^{n-1}}{3^{n-1}}$ is convergent. Please explain.
(t) Find the values of B so that the series $\sum_{n=1}^{\infty} \frac{(B-3)^{n-1}}{3^{n-1}}$ is convergent. Please explain.
(u) Find the values of C so that the series $\sum_{n=5}^{\infty} \frac{(C-2)^{n}}{3^{n+1}}$ is convergent. Please explain.
4. The following questions ask you to determine the converge/divergence of a series. To receive credit, give detailed explanation (for example, follow my answer key - to be posted).
(a) Determine whether the series $\sum_{k=1}^{\infty} \frac{k^{k}}{7^{k}(k)!}$ is convergent.
(b) Determine whether the series $\sum_{k=1}^{\infty} \frac{k^{k}}{2^{k}(k)!}$ is convergent.
(c) Determine whether the series $\sum_{n=3}^{\infty} \frac{6}{n \sqrt{n^{2}-8}}$ converges or diverges.
(d) Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+1}}{3 n^{3}-4 n+2}$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments.
(e) Determine whether the series $\sum_{n=1}^{\infty} \frac{n!}{7^{n}(n+8)!}$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments.
(f) Determine whether the series $\sum_{n=1}^{\infty} \frac{(n+8)!}{7^{n} n!}$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments. (This looks similar to above, but this isn't a typo).
(g) Determine whether the series $\sum_{n=1}^{\infty} \ln \left(\frac{3 n}{n+1}\right)$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments.
(h) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{5 n+3}$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments.
(i) Determine the convergence of $\sum_{k=1}^{\infty} k \cos \left(\frac{\pi k+1}{2 k}\right)$.
(j) Determine the convergence of $\sum_{k=1}^{\infty}\left(\frac{2 k}{5 k+5}+\frac{1}{(4)^{k}}\right)$
(k) Determine the convergence of $\sum_{k=1}^{\infty} \frac{2^{4 k+1}}{5^{2 k-1}}$. If this series is convergent, compute its sum.
(l) Determine the convergence of $\sum_{k=2}^{\infty} \frac{8^{3 k+1}}{9^{2 k-1}}$. If this series is convergent, compute its sum.
5. Review pg 4-5 of https://egunawan.github.io/spring18/notes/notes4_4lhopitals_rule.pdf
(a) Compute $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{3 n}$.
(b) Compute $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{n}$.
(c) Compute $\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{5 n}$.
(d) Compute $\lim _{n \rightarrow \infty} n^{2} e^{-n}$.
(e) Compute $\lim _{n \rightarrow \infty} \frac{\ln n}{n}$.
(f) Compute $\lim _{n \rightarrow \infty} \frac{n \sin n}{n^{2}+1}$.
6. Consider the series $\sum a_{n}=\sum_{n=2}^{\infty} \frac{\cos (n \pi)}{n-1}$.
(a) What are the first three terms in the series?
(b) Is the series convergent? You must justify.
(c) Is the series $\sum a_{n}=\sum_{n=2}^{\infty} \frac{|\cos (n \pi)|}{n-1}$ convergent? You must justify.
7. (a) Define an alternating series.
(b) State the alternating series test.
(c) Determine whether the series

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{k=1}^{\infty} \frac{(-1)^{n-1}}{n}
$$

is convergent or divergent.
(d) Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{n} 3 n}{4 n-1}$ is convergent or divergent.
(e) Determine whether the series $\sum_{k=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+1}$ converges or diverges.
8. (a) Evaluate $\lim _{n \rightarrow \infty} e^{-n} \sqrt{n}$.
(b) Determine whether $\sum_{n=0}^{\infty} e^{-n} \sqrt{n}$ converges or diverges.
(c) Evaluate $\lim _{n \rightarrow \infty} \frac{(\ln (n))^{2}}{n^{2}}$.
(d) Determine whether $\sum_{n=1}^{\infty} \frac{(\ln (n))^{2}}{n^{2}}$ converges or diverges.
(e) Suppose $\sum_{n=1}^{\infty} a_{n}$ is a series with the property that

$$
a_{1}+a_{2}+\cdots+a_{n}=2-3(0.8)^{n}
$$

State whether $\sum_{n=1}^{\infty} a_{n}$ converges or diverges. If it converges, find its sum.
9. Determine whether each series converges or diverges.
a.) $\quad \sum_{n=1}^{\infty} \frac{\ln n}{n}$
b.) $\sum_{n=4}^{\infty} \frac{1}{2^{n}-9}$
i.) $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}$
ii.) $\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}$

