\mathbf{F}

Sections 11.1-11.2, 11.4-11.6

- 1. For the following questions, circle TRUE or FALSE, and give a justification. True statements should be argued for using facts, theorems or definitions from class.
 - (a) If $\lim_{n \to \infty} a_n = 0$ then the series $\sum a_n$ converges. **T**

Justification:

(b) If
$$a_n > 0$$
, $b_n > 0$ for all $n, \sum b_n$ diverges, and $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, then $\sum a_n$ diverges. **T F**

Justification:

- (c) If $a_n > 0$ for all $n \& \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0$, then $\sum a_n$ is convergent by the ratio test **T F Justification:**
- (d) If a_n and b_n are both positive for all n and $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, then $\sum a_n$ is convergent by the limit comparison test **T F Justification:**
- (e) The harmonic series $\sum 1/n$ is convergent by the *p*-series test **T F Justification:**
- (f) We can use the ratio test *alone* to show the geometric series $\sum \frac{2^n}{3^n}$ converges **T F Justification:**
- (g) We can use the p-series test *alone* to show the series $\sum 2^n/3^n$ converges **T F Justification:**
- (h) We can apply the monotonic sequence theorem to show that the geometric sequence $\{2^n/3^n\}_{n=1}^{\infty}$ is convergent **T**

Justification:

- (i) We can apply the monotonic sequence theorem to show that the harmonic sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ is convergent **T F Justification:**
- (j) We can apply the squeeze theorem to show that the alternating harmonic sequence $\left\{\frac{(-1)^n}{n}\right\}$ is convergent **T F Justification:**
- (k) It is impossible for a subset of a line to have infinitely many points and have length zero.
 T Justification:

(l) The divergence of the *p*-series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 for $0 follows from divergence of the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ and the comparison test.$

Justification:

(m) The convergence of the *p*-series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 for $p > 1$ follows from divergence of the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ and the comparison test. **T F**

Justification:

- (n) Convergence of $\sum \frac{1}{n^p}$ for p > 1 can be shown with the ratio test. **T F** Justification:
- (o) Divergence of a *p*-series for p < 1 can be shown with the ratio test. **T F Justification:**
- 2. (a) State the contrapositive of the factual statement: "If the sequence $\{a_n\}$ is unbounded, then it is divergent".
 - (b) Is the contrapositive statement you wrote as your answer to part (a) true or false? Justification (explain or give a counterexample):
 - (c) The converse of part (a) is the following: "If the sequence $\{a_n\}$ is divergent, then $\{a_n\}$ is unbounded". Is this true or false? Justification (explain or give a counterexample):
- 3. Answer the following on the line provided.

- (a) What is the 100th term of the sequence {2, 5, 8, 11, ... }?(The terms 2 and 5 are the first and second term, respectively)
- (b) Find a formula for the general term a_n of the sequence $\left\{1, -\frac{2}{5}, \frac{3}{25}, -\frac{4}{125}, \frac{5}{625} \dots\right\}$. Make sure to specify your starting value of n.
- (c) Write the geometric series $4 + 2 + 1 + \frac{1}{2} \cdots$ in standard form. (summation notation Σ)
- (d) Find the 4th term a_4 in the recursive sequence $a_{n+1} = 2a_n + a_{n-1}$ when $a_1 = 1$ and $a_2 = 1$.
- (e) Find the 7th term a_7 in the recursive sequence $a_{n+1} = a_n + a_{n-1}$ when $a_1 = 2$ and $a_2 = 3$.
- (f) We can use geometric series to compute

$$\frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \dots$$

What fraction is this equal to?

- (g) We can use geometric series to compute 0.9999... What fraction is this equal to?
- (h) One of the two decimal expansions for a number is 2.449999.... What's the other?
- (i) Use geometric series to compute the fraction for 1.833333....Perform a sanity check against your answer.

(k) Does the series
$$\sum_{n=1}^{\infty} -\ln\left(\frac{n}{2n+7}\right)$$
 converge or diverge?

(1) Find the sum of the series $\sum_{k=0}^{\infty} 5\left(\frac{2}{3}\right)^k$.

(m) Find the sum of the series
$$\sum_{n=2}^{\infty} 5\left(\frac{(-6)^{n-1}}{7^n}\right)$$
.

Perform a sanity check against your answer.

(n) Find the sum of the series

$$-5+3-\frac{9}{5}+\frac{27}{25}-\frac{81}{125}+\ldots$$

Perform a sanity check against your answer.

(o) Write an expression for the nth term in the sequence

 $\left\{\frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \dots\right\}$. (The terms $\frac{1}{2}$ and $\frac{1}{6}$ are the first and second terms in the sequence)

(p) Write an equivalent series with index summation beginning at n = 0.

$$\sum_{n=2}^{\infty} \frac{2^n}{(n-2)!}$$

Perform a sanity check against your answer.

(q) Write an equivalent series with index summation beginning at n = 1.

$$\sum_{n=2}^{\infty} \frac{2^n}{(n-2)!}$$

Perform a sanity check against your answer.

- (r) For what values of k does the series $\sum \frac{5}{n^k}$ converge? Please explain.
- (s) Find the values of A so that the series $\sum_{n=1}^{\infty} \frac{(A)^{n-1}}{3^{n-1}}$ is convergent. Please explain.
- (t) Find the values of B so that the series $\sum_{n=1}^{\infty} \frac{(B-3)^{n-1}}{3^{n-1}}$ is convergent. Please explain.
- (u) Find the values of C so that the series $\sum_{n=5}^{\infty} \frac{(C-2)^n}{3^{n+1}}$ is convergent. Please explain.
- 4. The following questions ask you to determine the converge/divergence of a series. To receive credit, give detailed explanation (for example, follow my answer key to be posted).

(a) Determine whether the series
$$\sum_{k=1}^{\infty} \frac{k^k}{7^k(k)!}$$
 is convergent.

- (b) Determine whether the series $\sum_{k=1}^{\infty} \frac{k^k}{2^k (k)!}$ is convergent.
- (c) Determine whether the series $\sum_{n=3}^{\infty} \frac{6}{n\sqrt{n^2-8}}$ converges or diverges.
- (d) Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n^3+1}}{3n^3-4n+2}$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments.
- (e) Determine whether the series $\sum_{n=1}^{\infty} \frac{n!}{7^n(n+8)!}$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments.
- (f) Determine whether the series $\sum_{n=1}^{\infty} \frac{(n+8)!}{7^n n!}$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments. (This looks similar to above, but this isn't a typo).
- (g) Determine whether the series $\sum_{n=1}^{\infty} \ln\left(\frac{3n}{n+1}\right)$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments.
- (h) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{5n+3}$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments.

(i) Determine the convergence of
$$\sum_{k=1}^{\infty} k \cos\left(\frac{\pi k+1}{2k}\right)$$
.

(j) Determine the convergence of
$$\sum_{k=1}^{\infty} \left(\frac{2k}{5k+5} + \frac{1}{(4)^k} \right)$$

- (k) Determine the convergence of $\sum_{k=1}^{\infty} \frac{2^{4k+1}}{5^{2k-1}}$. If this series is convergent, compute its sum.
- (l) Determine the convergence of $\sum_{k=2}^{\infty} \frac{8^{3k+1}}{9^{2k-1}}$. If this series is convergent, compute its sum.
- 5. Review pg 4-5 of https://egunawan.github.io/spring18/notes/notes4_4lhopitals_rule.pdf
 - (a) Compute $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{sn}$. (b) Compute $\lim_{n \to \infty} \left(1 + \frac{1}{2n} \right)^n$.
 - (c) Compute $\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^{5n}$.

- (d) Compute $\lim_{n \to \infty} n^2 e^{-n}$.
- (e) Compute $\lim_{n \to \infty} \frac{\ln n}{n}$.
- (f) Compute $\lim_{n \to \infty} \frac{n \sin n}{n^2 + 1}$.

6. Consider the series
$$\sum a_n = \sum_{n=2}^{\infty} \frac{\cos(n\pi)}{n-1}$$
.

- (a) What are the first three terms in the series?
- (b) Is the series convergent? You must justify.

(c) Is the series
$$\sum a_n = \sum_{n=2}^{\infty} \frac{|\cos(n\pi)|}{n-1}$$
 convergent? You must justify.

- 7. (a) Define an alternating series.
 - (b) State the alternating series test.
 - (c) Determine whether the series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{k=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

is convergent or divergent.

(d) Determine whether the series
$$\sum_{k=1}^{\infty} \frac{(-1)^n \ 3n}{4n-1}$$
 is convergent or divergent.

(e) Determine whether the series
$$\sum_{k=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$$
 converges or diverges.

- 8. (a) Evaluate $\lim_{n \to \infty} e^{-n} \sqrt{n}$.
 - (b) Determine whether $\sum_{n=0}^{\infty} e^{-n} \sqrt{n}$ converges or diverges.
 - (c) Evaluate $\lim_{n \to \infty} \frac{(\ln (n))^2}{n^2}$.
 - (d) Determine whether $\sum_{n=1}^{\infty} \frac{(\ln (n))^2}{n^2}$ converges or diverges.
 - (e) Suppose $\sum_{n=1}^{\infty} a_n$ is a series with the property that

 $a_1 + a_2 + \dots + a_n = 2 - 3(0.8)^n$.

State whether $\sum_{n=1}^{\infty} a_n$ converges or diverges. If it converges, find its sum. 9. Determine whether each series converges or diverges.

a.)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$
 b.) $\sum_{n=4}^{\infty} \frac{1}{2^n - 9}$ i.) $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$ ii.) $\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$