Math 1152, Spring 2018 - Exam 3 Fact Sheet

Useful trig facts.

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1, \quad \tan ^{2} \theta+1=\sec ^{2} \theta, \quad \cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta), \quad \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) \\
\sin \frac{\pi}{6}=\frac{1}{2}, \quad \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{3}=\frac{1}{2}, \quad \sin \frac{\pi}{4}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}
\end{gathered}
$$

Some derivatives. $\frac{d}{d x} b^{x}=\ln (b) b^{x}, \quad \frac{d}{d x} \sin (x)=\cos (x), \quad \frac{d}{d x} \cos (x)=-\sin (x), \quad \frac{d}{d x} \tan (x)=(\sec (x))^{2}$, $\frac{d}{d x} \csc (x)=-\csc (x) \cot (x), \quad \frac{d}{d x} \sec (x)=\sec (x) \tan (x), \quad \frac{d}{d x} \cot (x)=-(\csc (x))^{2}$

L'Hôpital's rule. Suppose f, g are differentiable functions and $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow \infty} g(x)$ are both 0 or both $\pm \infty$. Then

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Geometric series. A series of the form $\sum a r^{n}$ is called a geometric series.

- if $|r|<1$ then the series converges and $\sum_{n=0}^{\infty} a r^{n}=a /(1-r)$.
- if $|r| \geq 1$ then the series diverges.

Divergence test. Consider the series $\sum a_{n}$. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then $\sum a_{n}$ diverges.
p-series test. A series of the form $\sum_{n=1}^{\infty} \frac{1}{n^{p}} \quad$ is called a p-series. The series converges if and only if $p>1$.
Comparison test. Consider the series $\sum a_{n}$ with $a_{n} \geq 0$ for all n.

- if $a_{n} \leq b_{n}$ for all n and $\sum b_{n}$ converges, then $\sum a_{n}$ converges
- if $a_{n} \geq b_{n}$ for all n and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges

Limit comparison test. Consider the series $\sum a_{n}$ and $\sum b_{n}$ with $a_{n}, b_{n} \geq 0$ for all n and suppose that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=$ $c>0$. Then $\sum a_{n}$ and $\sum b_{n}$ either both converge or both diverge.

Alternating series test. A series $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ where $b_{n} \geq 0$ for all n is called an alternating series. If

1. $b_{n+1} \leq b_{n}$ for all n large enough (ie. $\left\{b_{n}\right\}$ is an eventually decreasing sequence)
2. $\lim _{n \rightarrow \infty} b_{n}=0$
then the series converges.
Ratio test. Consider the series $\sum_{n=1}^{\infty} a_{n}$ and suppose that $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.
3. if $L<1$ then $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
4. if $L>1$ or $L=\infty$ then $\sum_{n=1}^{\infty} a_{n}$ diverges.
5. if $L=1$ then the test is inconclusive.

Integral test. If f is continuous, non-negative, and decreasing on $[1, \infty)$ and $a_{n}=f(n)$, then

$$
\sum_{n=1}^{\infty} a_{n} \text { converges if and only if } \int_{1}^{\infty} f(x) d x \text { converges. }
$$

Integration by parts fomula. $\int u d v=u v-\int v d u$
Power series coefficients. If $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, then $c_{n}=\frac{f^{(n)}(a)}{n!}$
Alternating Series Estimation Theorem. If $S:=\sum_{k=r}^{\infty}(-1)^{k} b_{k}$, where $b_{k}>0$, is the sum of an alternating series that satisfies

$$
\text { (i) } b_{k+1} \leq b_{k} \quad \text { and } \quad \text { (ii) } \lim _{k \rightarrow \infty} b_{k}=0
$$

then $\left|R_{N}\right|=\left|S-S_{N}\right| \leq b_{N+1}$, where $S_{N}:=\sum_{k=r}^{N}(-1)^{k} b_{k}$.
Taylor's Inequality. If $\left|f^{n+1}(x)\right| \leq M$ for $|x-a| \leq d$, then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \text { for }|x-a| \leq d
$$

Table 1: Important Maclaurin Series and their Radii of Convergence

$$
\begin{array}{ll}
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots & R=1 \\
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots & R=\infty \\
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots & R=\infty \\
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots & R=\infty \\
\tan ^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots & R=1 \\
\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots & R=1 \\
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots &
\end{array}
$$

Tangents and areas. Suppose f and g are differentiable functions. Consider the curve defined by the parametric equations

$$
x=f(t), \quad y=g(t),
$$

where y is a differentiable function of x. Then

$$
\frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)} \quad \text { if } \quad \frac{d x}{d t} \neq 0
$$

The area under the curve from $x=a$ to $x=b$ which is traced out once by the curve, $\alpha \leq t \leq \beta$, can be calculated as follows:

$$
\int_{a}^{b} \mathrm{y} \mathrm{dx}=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) \mathrm{dt} \quad \text { or } \quad \int_{a}^{b} \mathrm{y} \mathrm{dx}=\int_{\beta}^{\alpha} g(t) f^{\prime}(t) \mathrm{dt} .
$$

