Suggestion: practice just a few problems from each topic.

Contents

$1 \quad 11.8$ power series 1
211.9 power series: using geometric series and step-by-step integration/differentiation 3
$3 \quad 11.10$ Taylor series 5
$4 \quad$ 10.1-10.2 Calculus with parametric equations 12
5 10.3-10.4 Polar equations, sketch, derivatives and area 16
6 9.1 Modeling with differential equations 20
7 9.3 Separable differential equations 25

111.8 power series

1. What is a power series?

Solution: See Sec 11.8, top of page 747
2. What is the radius of convergence of a power series? What are the different possibilities?

Solution: There are three cases. See Sec 11.8, top of page 749
3. In most cases, how do you find the radius of convergence of a power series?

Solution: See the test used in Examples 1-5 in Sec 11.8, pg 747-750: use geometric series test or ratio test.
4. From textbook: Find the radius of convergence and interval of convergence of the following series
(a.) $\sum_{n=0}^{\infty} \frac{n(x+2)^{n}}{3^{n+1}}$.
(b.) $\sum_{n=0}^{\infty} n!x^{2 n}$.
(c.) $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n^{5}}$.
(d.) $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n!}$.

Solution: (a.) See 11.8 Ex. 5, pg 750 . (b.) Sec 11.8 Ex. 1, pg 747 . (c.) Same radius of convergence as 11.8 Ex. 2, pg 747, but both endpoints are included. (d.) Same answer as 11.8 Ex. 3, pg 748.
5. From WebAssign: Find the radius R and interval I of convergence of each series.
(A.) $\sum_{n=1}^{\infty} \frac{x^{n}}{6 n-1}$.
(B.) $\sum_{n=1}^{\infty} \frac{6^{n}(x+7)^{n}}{\sqrt{n}}$.
(C.) $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+4}$.
(D.) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{5 n}}{(2 n)!}$.
Solution: (A.) $R=1, I=[-1,1)$.
(B.) $R=1 / 6, I=[-43 / 6,-41 / 6)$.
(C.) $R=1, I=(-1,1]$.
(D.) $R=\infty$, $I=(-\infty, \infty)$
6. (a) Suppose that the radius of convergence of the power series $\sum c_{n} x^{n}$ is 16 . What is the radius of convergence of the power series $\sum c_{n} x^{4 n}$?

Solution: Answer: $\sqrt[4]{16}=2$
(b) Suppose that the radius of convergence of the power series $\sum c_{n} x^{n}$ is R . What is the radius of convergence of the power series $\sum c_{n} x^{5 n}$?

Solution: Answer: $\sqrt[{\sqrt[5]{R}}]{ }$

7. Determine the radius of convergence and interval of convergence for $\sum_{n=1}^{\infty} \frac{2^{n}}{n} x^{n}$.

Solution:

Thinking about the problem: The series converges at $x=0$. For $x \neq 0$, we will investigate convergence at x using the Ratio Test $\left(a_{n}=\left(2^{n} / n\right) x^{n}\right)$. After the interval of convergence is determined, convergence at its endpoints will be checked by other methods.
Doing the problem:
The problem asks for an interval of convergence of a power series. This series is $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}=\left(2^{n} / n\right) x^{n}=2^{n} x^{n} / n$, so for $x \neq 0$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{2^{n+1} x^{n+1} /(n+1)}{2^{n} x^{n} / n}\right| \\
& =\lim _{n \rightarrow \infty} 2|x| \frac{n}{n+1} \\
& =2|x|
\end{aligned}
$$

By the Ratio Test, the series converges when $2|x|<1$ and diverges when $2|x|>1$, so the series converges when $|x|<\frac{1}{2}$ and diverges when $|x|>\frac{1}{2}$. Therefore the radius of convergence is $R=\frac{1}{2}$. The inequality $2|x|<1$ says x is in $(-1 / 2,1 / 2)$, and we need to test the endpoints to see if the power series converges when $x=-1 / 2$ or $x=1 / 2$. First we let $x=1 / 2$. Then the power series is

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{n}\left(\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

which diverges (the harmonic series). Next we let $x=-1 / 2$, so the power series becomes

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{n}\left(-\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

which converges by the Alternating Series Test. Therefore the interval of convergence of $\sum_{n=1}^{\infty} \frac{2^{n}}{n} x^{n}$ is $\left[-\frac{1}{2}, \frac{1}{2}\right)$: the left endpoint is included but the right endpoint is not.

211.9 power series: using geometric series and step-by-step integration/differenti

8. For each function, find a power series representation and determine the interval of convergence.
(You can check your work with WolframAlpha. Type "series representation of ...")
(a) $f(x)=\frac{1}{3+x}$

Solution: Interval of convergence is $(-3,3)$. See Sec 11.9 Example 2.
(b) $f(x)=\frac{x^{3}}{5+x}$

Solution: See Sec 11.9 Example 3.
(c) $f(x)=\frac{x}{1+10 x^{2}}$

Solution: Interval of convergence is | $\left(-\frac{1}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right)$ |
| :---: | :---: | . Use the same strategy as Sec 11.9 Example 3.

9. For each function, find a power series representation. Determine the radius of convergence.
(a) $f(x)=\frac{1}{(2+x)^{2}}$

Solution: Similar to Sec 11.9 Ex. 5, use differentiation.
The power series representation is $\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+1)}{2^{n+2}} x^{n}$. The radius of convergence is $\lcm{2}$.
(b) $f(x)=\frac{1}{(2+x)^{3}}$

Solution: Similar to Sec 11.9 Example 5. Use the answer to question (a) to get the power series representation $\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+1)(n+2)}{2\left(2^{n+3}\right)} x^{n}$. The radius of convergence is the same, 2 .
(c) $f(x)=\frac{x}{(2+x)^{3}}$

Solution: Similar to Sec 11.9 Example 5. This is just x^{2} times the answer to question (b). The power series representation is $\sum_{n=2}^{\infty}(-1)^{n} \frac{n(n-1)}{2\left(2^{n+1}\right)} x^{n}$. The radius of convergence is the same, 2 .
(d) $f(x)=\ln (1+x)$

Solution: (see Sec 11.9, Example 6)
(e) $f(x)=\arctan (x)$

Solution: (see Sec 11.9, Example 7)
(f) $\int \frac{1}{1+x^{7}} \mathrm{dx}$

Solution: (see Sec 11.9, Example 8)
(g) $\int \frac{x}{1-x^{7}} \mathrm{dx}$

Solution: Similar to Sec 11.9, Ex.8. Series repr. is $\sum_{n=0}^{\infty} \frac{x^{7 n+2}}{7 n+2}+C$. Radius of convergence is 1 .
10. (a) If the interval of convergence of a power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is $[-9,11)$, what is the radius of convergence of the series $\sum_{n=1}^{\infty} n c_{n} x^{n-1}$? Why?

Solution: Answer: $R=10$ by Theorem 'term-by-term differentiation' Sec 11.9.
(b) If the interval of convergence of a power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is $[-9,11)$, what is the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{c_{n}}{n+1} x^{n+1}$? Why?

Solution: Answer: $R=10$ by Theorem 'term-by-term integration' Sec 11.9.
11. Find a power series centered at $x=0$ for the function $\frac{1}{2-5 x}$ and find its interval of convergence.

Solution: Thinking about the problem: The function $f(x)=\frac{1}{2-5 x}$ looks similar to $\frac{1}{1-x}$, so we will alter $f(x)$ to make it more closely resemble that. Factor 2 from the whole denominator: $\frac{1}{2-5 x}=\frac{1}{2} \cdot \frac{1}{1-5 x / 2}$. We will write $\frac{1}{1-5 x / 2}$ as a geometric series by replacing x in $\frac{1}{1-x}$ with $5 x / 2$. The interval of convergence of the power series for $\frac{1}{1-x}$ is $(-1,1)$, and we will use this to find the interval of convergence of the power series for $\frac{1}{1-5 x / 2}$, which will give us the interval of convergence for the power series of $f(x)$ centered at $x=0$.

Doing the problem:
The problem is to find a power series of $f(x)=\frac{1}{2-5 x}$ centered at $x=0$. Write

$$
f(x)=\frac{1}{2-5 x}=\frac{1}{2(1-5 x / 2)}=\frac{1}{2} \cdot \frac{1}{1-5 x / 2} .
$$

In the power series representation $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$, replace x with $\frac{5 x}{2}$:

$$
\frac{1}{1-5 x / 2}=\sum_{n=0}^{\infty}\left(\frac{5 x}{2}\right)^{n} \text { for }\left|\frac{5 x}{2}\right|<1
$$

Thus

$$
f(x)=\frac{1}{2-5 x}=\frac{1}{2} \cdot \frac{1}{1-5 x / 2}=\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{5 x}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{5^{n}}{2^{n+1}} x^{n} \text { for }\left|\frac{5 x}{2}\right|<1 .
$$

We have found a power series for $f(x)$ centered at $x=0$ and that it converges precisely when $\left|\frac{5 x}{2}\right|<1$, which is the same as $|x|<\frac{2}{5}$.
Therefore a power series for $f(x)$ centered at $x=0$ has interval of convergence $\left(-\frac{2}{5}, \frac{2}{5}\right)$.

3 11.10 Taylor series

Khan Academy Taylor, Maclaurin, and Power series online quizzes: https://www.khanacademy.org/math/calculus-home/series-calc/challenge-exercises-series-calc/ e/taylor-maclaurin-power-series-challenge

Khan Academy Series estimation online quizzes: https://www.khanacademy.org/math/calculus-home/series-calc/challenge-exercises-series-calc/e/series-estimatic
12. i. If f has a power series representation at 4 , that is, if $f(x)=\sum_{n=0}^{\infty} c_{n}(x-4)^{n}$ for $|x-4|<R$, then its coefficients are given by the formula $c_{n}=$ \qquad .

Solution:

Theorem 5 on page 760 .
ii. Circle all the true statements and cross out all the false statements, and justify.
(a) If the series $\sum_{n=1}^{\infty} c_{n} x^{n}$ converges for $|x|<R$, then $\lim _{n \rightarrow \infty} c_{n} x^{n}=0$ for $|x|<R$.

Solution: Answer: True. See explanation, first sentence of pg 763. Or see Sec 11.2, Thm 6, pg 713.
(b) If the series $\sum_{n=1}^{\infty} c_{n} x^{n}$ diverges for $x=5$, then $\lim _{n \rightarrow \infty} c_{n} x^{n} \neq 0$ for $x=5$.

Solution: Answer: False. A counterexample: $c_{n}=\frac{1}{n 5^{n}}$. See Ex. 9 Sec 11.2, pg 713.
iii. Find the Maclaurin series for $f(x)=6(1-x)^{-2}$. (You may assume that $f(x)$ has a power series expansion). Find the associated radius of convergence.

Solution: The Maclaurin series is $\sum_{n=0}^{\infty} 6(n+1) x^{n}$.
Option 1 (Sec 11.10): Use Taylor series theorem/formulas $5,6,7$ on pg 760 . Follow Example 8 but replace $(1+x)^{k}$ with $(1-x)^{-2}$.
Option 2 (Sec 11.9): First find the power series of $(1-x)^{-1}$ using geometric series. Then use term-by-term differentiation to find the power series for $-(1-x)^{-2}$.

The radius of convergence is $R=1$ by Ratio Test (if you use Option 1) or by geometric series theorem plus term-by-term differentiation theroem.
iv. Use a Maclaurin series given in this table http://egunawan.github.io/spring18/quizzes/11_10_table01.pdf (will be given) to obtain the Maclaurin series for the function $f(x)=8 e^{x}+e^{8 x}$. Find the radius of convergence.

Solution: Answer: Use the table to get $e^{x}=\sum_{n=1}^{\infty} x^{n} n!$. Apply the Composition Theorem with $h(x)=8 x$ and $f(t)=e^{t}$ to get $e^{8 x}=\sum_{n=1}^{\infty} \frac{(8 x)^{n}}{n!}$. Apply 'sum' theorem for series $(\operatorname{pg} 714$ Sec 11.2$)$ to get the sum $\sum_{n=0}^{\infty}\left(8+8^{n}\right) \frac{x^{n}}{n!}$. The series is convergent for all real numbers
v. Evaluate the indefinite integral $\left(8 \int \frac{e^{x}-1}{5 x} \mathrm{dx}\right)$ as an infinite series.

Solution: Answer: Read Example $11 \mathrm{pg} 768-769$ for similar problem. This answer gives the Maclaurin series but you can choose a different Taylor series centered not at 0. First either use the table or directly evaluate the Maclaurin series for $e^{x}-1=\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)-1=\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$. Multiply this Maclaurin series by $\frac{1}{x}$ to get $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n!}$. Apply term-by-term integration to get final answer, $\frac{8}{5} \sum_{n=1}^{\infty} \frac{x^{n}}{(n) n!}+C$.
vi. Find the Maclaurin series for $f(x)=e^{-4 x}$ using the definition of a Maclaurin series. (You may assume that $f(x)$ has a power series expansion). Find the associated radius of convergence R.

Solution: Answer: Follow Example 1 pg 760 but replace x with $-4 x$. You get $e^{-4 x}=\sum_{n=0}^{\infty}\left(\frac{(-4)^{n}}{n!}\right) x^{n}$. The series is convergent for all real numbers.
13. (a) Use Table 1 to show that $\frac{d}{d x} \cos (x)=-\sin (x)$.
(b) Write the first 3 nonzero terms of the Maclaurin series for $\tan (x)$ using Table 1 and long division of power series.

Solution: Example 13 Sec 11.10 page 770.
(c) Use the series that you just computed for $\tan (x)$ to evaluate

$$
\lim _{x \rightarrow 0} \frac{\tan (x)-x}{x^{3}}
$$

Solution: Answer: $1 / 3$.
(d) Use a different method to evaluate $\lim _{x \rightarrow 0} \frac{\tan (x)-x}{x^{3}}$.

Solution: answer: $1 / 3$.
(e) Write the first 3 nonzero terms of the Maclaurin series for $e^{x} \sin (x)$ using Table 1 and multiplication of power series.

Solution: answer: Follow Example 13 Sec 11.10 page 770.
(f) Write the first 3 nonzero terms of the Maclaurin series for $\sec (x)$ using long division of power series and Table 1.

Solution: answer: $1+x^{2} / 2+4 x^{4} / 24$
14. (a) An application of the Alternating Series Estimation Theorem is a way to ensure that we can get an approximation to the definite integral $\int_{0}^{1} e^{-x^{2}}$ dx using series so that the approximation is within a certain error bound (for example $1 / 1000$). T $\quad \mathbf{F}$

Solution: answer: True. See Example 11 Sec 11.10 pg 769.
(b) We can always use the Alternating Series Estimation Theorem to ensure that we can get an approximation of a function using its Taylor polynomial so that the approximation is within a certain error bound (for example, $1 / 1000$) on a certain interval.

Solution: False. This only works when the resulting series (for every x in the domain of the function) is alternating. See Example 1 Sec 11.11 pg 775.
15. (a) True or False? If $f(x)=1+3 x-2 x^{2}+5 x^{3}+\ldots$ for $|x|<1$ then $f^{\prime \prime \prime}(0)=30$.

Solution: True, since the coefficient for x^{n} is equal to $\frac{f(n)(0)}{n!}$ by definition of Maclaurin series. So $5=\frac{f^{\prime \prime \prime}(0)}{3!}$, so $f^{\prime \prime \prime}(0)=30$.
(b) Can you write a Maclaurin series for $f(x)=\sqrt[3]{x}$? Explain why or why not.

Solution: answer: The function $f(x)=\sqrt[3]{x}$ is not differentiable at 0 , so we cannot define a Maclaurin series for $f(x)$.
16. Using Table 1 (series), prove that $R e^{i \theta}=R \cos \theta+i R \sin \theta$

Solution: https://www.dropbox.com/s/oxeg1orvk5061ud/week13_notes10_3part1.pdf?dl=0
17. True or False, with justification.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=\frac{1}{e}$

T $\quad \mathbf{F}$

Solution: answer: True
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=-e$

T $\quad \mathbf{F}$

Solution: answer: False
(c) If $f(x)=2 x-x^{2}+\frac{1}{3} x^{3}-\ldots$ converges for all x, then $f^{\prime \prime \prime}(0)=2$

Solution: answer: False, by definition of Maclaurin series. See above answer.
18. (a) Find the 3rd degree Taylor polynomial of the function $f(x)=x e^{-2 x}$ centered at 0 . Sketch this polynomial. Label all the important points - label at least four convenient points.

Solution: answer: $T_{3}(x)=2 x^{3}-2 x^{2}+x$

(b) (i) Approximate $f(x)=\ln (1+2 x)$ by a Taylor polynomial of degree 3 centered at 1 .

Solution: answer: $\ln 3+2 / 3(x-1)-2 / 9(x-1)^{2}+8 / 81(x-1)^{3}$.
(ii) Use Taylor's Inequality to estimate the accuracy of the approximation $T_{3}(x)$ of $f(x)$ when $0.8 \leq x \leq 1.2$. You do not need to simplify your answer.

Solution:

Solution: answer:
Note that $f^{(4)}(x)=-96 /(1+2 x)^{4}$
$\left|R_{3}(x)\right| \leq \frac{M}{4!}|x-1|^{4}$, where $\left|f^{(4)}(x)\right| \leq M .0 .8 \leq x \leq 1.2$ implies $-0.2 \leq x-1 \leq 0.2$ which implies $|x-1| \leq 0.2$ which implies $|x-1|^{4} \leq 0.2^{4}=0.0016$. The largest possible value for $\left|f^{(4)}(x)\right|=96 /(1+2 x)^{4}$ in the interval is when $x=0.8$, so we let $M=\left|f^{(4)}(0.8)\right|=96 /(2.6)^{4}$. So the error is within $\frac{M}{4!} 0.0016$. You don't need to simplify M.
(c) Approximate $f(x)=e^{4 x^{2}}$ by a Taylor polynomial with degree 3 centered at 0 .

Solution: answer: $1+0 x+4 x^{2}+0 x^{3}=1+4 x^{2}$
19. Compute the Taylor series for $f(x)=\ln (x)$ at $a=10$.

Solution: Thinking about the problem: We will differentiate $\ln x$ enough times to see a pattern. The pattern will give us the coefficients in the Taylor series.

Doing the problem:
The first several higher derivatives of $f(x)=\ln x$ are in the table below.

n	0	1	2	3	4	5	6	7
$f^{(n)}(x)$	$\ln x$	$1 / x$	$-1 / x^{2}$	$2 / x^{3}$	$-6 / x^{4}$	$24 / x^{5}$	$-120 / x^{6}$	$720 / x^{7}$

The pattern for $n \geq 1$ is $f^{(n)}(x)=(-1)^{n-1} \frac{(n-1)!}{x^{n}}$, so the Taylor series of $\ln x$ at $a=10$ is

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(10)}{n!}(x-10)^{n} & =f(10)+\sum_{n=1}^{\infty} \frac{f^{(n)}(10)}{n!}(x-10)^{n} \\
& =\ln 10+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n-1)!}{10^{n} n!}(x-10)^{n} \\
& =\ln 10+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-10)^{n}}{10^{n} n} \\
& =\ln 10+\frac{x-10}{10}-\frac{(x-10)^{2}}{200}+\frac{(x-10)^{3}}{3000}-\frac{(x-10)^{4}}{40000}+\cdots
\end{aligned}
$$

20. Find the Taylor series for $f(x)=\sqrt{x}$ centered at 9 .

Solution: https://www.overleaf.com/read/krtzsqgykktb

21. Determine the 2nd-degree Taylor polynomial $T_{2}(x)$ for $\arctan x$ at $a=1$ and use Taylor's inequality to bound $\left|R_{2}(x)\right|$ if $|x-1| \leq \frac{1}{2}$, where $\arctan x=T_{2}(x)+R_{2}(x)$.

Solution:

Thinking about the problem: The 2nd-degree Taylor polynomial for a function $f(x)$ at $a=1$ is

$$
T_{2}(x)=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}
$$

We will find the coefficients when $f(x)=\arctan x$. To bound $R_{2}(x)$ when $|x-1| \leq \frac{1}{2}$ with Taylor's inequality, we need an M such that $\left|f^{\prime \prime \prime}(x)\right| \leq M$ for $|x-1| \leq \frac{1}{2}$.

Doing the problem:

To find $T_{2}(x)$, here is a table of higher derivatives of $f(x)=\arctan x$.

n	$f^{(n)}(x)$	$f^{(n)}(1)$
0	$\arctan x$	$\frac{\pi}{4}$
1	$\frac{1}{1+x^{2}}$	$\frac{1}{2}$
2	$\frac{-2 x}{\left(1+x^{2}\right)^{2}}$	$-\frac{1}{2}$

From the table, $T_{2}(x)=\frac{\pi}{4}+\frac{1}{2}(x-1)-\frac{1 / 2}{2}(x-1)^{2}=\frac{\pi}{4}+\frac{1}{2}(x-1)-\frac{1}{4}(x-1)^{2}$. The graphs below show $T_{2}(x)$ is a good approximation of $\arctan x$ for $|x-1| \leq \frac{1}{2}$. For comparison we also include $T_{1}(x)$, the linear approximation to $\arctan x$ at $a=1$.

To bound $\left|R_{2}(x)\right|$ for $|x-1| \leq 1 / 2$, we need to a number M such that $\left|f^{\prime \prime \prime}(x)\right| \leq M$ for $|x-1| \leq 1 / 2$. What is the biggest value of $\left|f^{\prime \prime \prime}(x)\right|$ for $|x-1| \leq 1 / 2$?

From the formula for $f^{\prime \prime}(x)$ in the table, $f^{\prime \prime \prime}(x)=\frac{6 x^{2}-2}{\left(1+x^{2}\right)^{3}}$. Here is the graph of $f^{\prime \prime \prime}(x)$.

There is a local maximum of $f^{\prime \prime \prime}(x)$ at $x=1$ where $f^{\prime \prime \prime}(1)=1 / 2$ (the 4th derivative $f^{(4)}(x)=24 x\left(1-x^{2}\right) /\left(1+x^{2}\right)^{4}$ vanishes at $x=1$) and at endpoints $f^{\prime \prime \prime}(1 / 2) \approx-.256$, and $f^{\prime \prime \prime}(3 / 2) \approx .335$, so $-.256 \leq f^{\prime \prime \prime}(x) \leq 1 / 2$ when $|x-1| \leq 1 / 2$.

So use $M=\left|f^{\prime \prime \prime}(1)\right|=1 / 2$:

$$
|x-1| \leq \frac{1}{2} \Longrightarrow\left|R_{2}(x)\right| \leq \frac{M}{3!}|x-1|^{3}=\frac{1}{12}|x-1|^{3} \leq \frac{1}{12}\left(\frac{1}{2}\right)^{3}=\frac{1}{12 \cdot 8}=\frac{1}{96} \approx .0104
$$

4 10.1-10.2 Calculus with parametric equations

22. For the following two parametric curves

$$
\text { (1) } x=\cos t, y=\sin t \text { for } 0 \leq t \leq 2 \pi, \quad \text { (2) } x=-\sin (2 t), y=-\cos (2 t) \quad \text { for } \quad 0 \leq t \leq \frac{3 \pi}{2}
$$

eliminate the parameter to obtain an equation for the curve that directly relates x and y (non-parametric form of the curve) and then sketch the curve with an arrow indicating the direction it is traced out as t increases. Find the initial and final points.

Solution:

Thinking about the problem: Since x and y are essentially sines and cosines (or vice versa) of the same value (t or $2 t$), we expect the equation for the curve directly relating x and y will be a circle of radius 1 . The parametric formulas for x and y will tell us the initial and final points of the traced circle, the direction the circle is traced out, and how many times the circle is traced out.

Doing the problem:
(1) $x^{2}+y^{2}=\cos ^{2} t+\sin ^{2} t=1$: the curve $(x(t), y(t))=(\cos t, \sin t)$ is part of the unit circle. In the table below we compute $(x(t), y(t))$ at $t=0, t=\pi / 2, t=\pi$, and $t=2 \pi$.

$$
\begin{array}{c|cccc}
t & 0 & \pi / 2 & \pi & 2 \pi \\
\hline(\cos t, \sin t) & (1,0) & (0,1) & (-1,0) & (1,0)
\end{array}
$$

These points are marked in the figure below, which shows the curve traced out by the parametrization is a circle going counterclockwise once. The direction the curve is traced out is indicated with arrows. It starts at $(x(0), y(0))=(1,0)$ and ends at $(x(2 \pi), y(2 \pi))=(1,0)$.

(2) $x^{2}+y^{2}=(-\sin (2 t))^{2}+(-\cos (2 t))^{2}=\sin ^{2}(2 t)+\cos ^{2}(2 t)=1$, so the curve $(x(t), y(t))=(-\sin (2 t),-\cos (2 t))$ traces out part of the unit circle. The table below shows $(x(t), y(t))$ at $t=0, t=\pi / 4, t=\pi / 2, t=\pi$, and $t=3 \pi / 2$.

$$
\begin{array}{c|ccccc}
t & 0 & \pi / 4 & \pi / 2 & \pi & 3 \pi / 2 \\
\hline(-\sin (2 t),-\cos (2 t)) & (0,-1) & (-1,0) & (0,1) & (0,-1) & (0,1)
\end{array}
$$

These points are marked in the figure below, which shows the curve traced out by the parametrization is a circle going clockwise one and a half times. The direction of increasing t is indicated with arrows. It starts at $(x(0), y(0))=(0,-1)$ and ends at $(x(3 \pi / 2), y(3 \pi / 2))=(0,1)$.

23. i. (a) Find parametric equations for the top half of the circle centered at $(2,3)$ with radius 5 , oriented clockwise.

Solution: Answer:

$$
\begin{aligned}
& x=2+5 \cos (-t) \\
& y=3+5 \sin (-t) \\
& \text { for } \pi \leq t \leq 2 \pi
\end{aligned}
$$

(b) Eliminate the parameter to find a Cartesian equation of the curve.
ii. Consider the curve described by the parametric equations

$$
\begin{aligned}
& x=t^{3}+1 \\
& y=2 t-t^{2}, \quad \text { for }-\infty<t<\infty
\end{aligned}
$$

(a) Mark the orientation on the curve (direction of increasing values of t).

(b) Find the area enclosed by the x-axis and the given curve.

Solution: Answer:

$$
\begin{aligned}
\int_{1}^{9} y \mathrm{dx} & =\int_{t=0}^{t=2} y(t) x^{\prime}(t) d t \\
& =\int_{0}^{2}\left(2 t-t^{2}\right)\left(3 t^{2}\right) d t \\
& =\int_{0}^{2}\left(6 t^{3}-3 t^{4}\right) d t \\
& =\frac{6}{4} t^{4}-\left.\frac{3}{5} t^{5}\right|_{0} ^{2} \\
& =\frac{3(16)}{2}-\frac{3(32)}{5} \\
& =\frac{3(40-32)}{5} \\
& =\frac{24}{5}
\end{aligned}
$$

(c) Perform and describe a reality check by comparing your answer and the graph which has been drawn to scale.
iii. Consider the cycloid which is described by the parametric equations

$$
\begin{aligned}
& x=5(t-\sin t) \\
& y=5(1-\cos t), \quad \text { for } \infty<t<\infty
\end{aligned}
$$

(a) Mark the orientation on the curve (direction of increasing values of t).

(b) Find the area enclosed by the x-axis and one arch of the cycloid. Hint: $d x=5(1-\cos t) d t$.

Solution: Answer: $3 \pi 5^{2}$

(c) Perform a reality check by comparing your answer and the graph (which is drawn to scale).
24. On the parametric curve $(x, y)=(\cos (t), \sin (2 t))$, whose graph is below, determine (a) the slopes of the two tangent lines at the origin and (b) coordinates of the point in the first quadrant where the tangent line has slope -2 .

Solution:

Thinking about the problem: We will figure out t-values where $(x(t), y(t))$ is the origin and compute $\frac{d y}{d x}$ at such t. To figure out where $\frac{d y}{d x}=-2$ in the first quadrant, rewrite this as $\frac{d y}{d t}=-2 \frac{d x}{d t}$, find the t-value where that happens in the first quadrant, and then compute $(x(t), y(t))$ to get coordinates.

Doing the problem:

Below we mark points at t-values that are multiples of $\pi / 4$ from 0 to 2π. Starting at $(1,0)$ where $t=0$, the curve is traced out through quadrants $1,3,2$, and 4 (note the arrows) before returning to $(1,0)$.

(a) The derivative on this curve is $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 \cos (2 t)}{-\sin t}=-2 \frac{\cos (2 t)}{\sin t}$. The two times the curve passes through the origin are at $t=\pi / 2$ and $t=3 \pi / 2$, and the derivatives at these t-values are

$$
\left.\frac{d y}{d x}\right|_{t=\pi / 2}=-2 \frac{\cos (2(\pi / 2))}{\sin (\pi / 2)}=-2 \frac{\cos (\pi)}{\sin (\pi / 2)}=-2\left(\frac{-1}{1}\right)=2
$$

and

$$
\left.\frac{d y}{d x}\right|_{t=3 \pi / 2}=-2 \frac{\cos (2(3 \pi / 2))}{\sin (3 \pi / 2)}=-2 \frac{\cos (3 \pi)}{\sin (3 \pi / 2)}=-2\left(\frac{-1}{-1}\right)=-2 .
$$

(b) To find where $\frac{d y}{d x}=-2$ in the first quadrant we will solve $-2 \frac{\cos (2 t)}{\sin t}=-2$ with $0 \leq t \leq \pi / 2$. That means $\cos (2 t)=\sin t$, or $1-2 \sin ^{2}(t)=\sin t$ by the double-angle formula for $\cos (2 t)$. By the quadratic formula, $1-2 a^{2}=a$ at $a=1 / 2$ and -1 , so we want to solve $\sin t=1 / 2$ and $\sin t=-1$. When $0 \leq t \leq \pi / 2$ the number $\sin t$ is not negative so we just need to solve $\sin t=1 / 2$ and that happens at $t=\pi / 6$. Thus the point in quadrant 1 with tangent slope -2 is $(x(\pi / 6), y(\pi / 6))=(\cos (\pi / 6), \sin (\pi / 3))=(\sqrt{3} / 2, \sqrt{3} / 2)$.

5 10.3-10.4 Polar equations, sketch, derivatives and area

25. (a) Sketch the polar equation $r=\frac{5}{2}$
(b) Sketch the polar equation $\theta=\frac{\pi}{4}$
(c) Convert the polar equation $r=3$ to Cartesian.

Solution: Answer: $x^{2}+y^{2}=9$
(d) Convert the polar equation $\theta=\frac{\pi}{3}$.

Solution: Answer: $y=\sqrt{3} x$
(e) Convert the polar equation $\theta=\frac{\pi}{6}$.

Solution: Answer: $y=\frac{\sqrt{3}}{3} x$
(f) Convert the polar equations $r=9 \cos \theta$ to Cartesian.

Solution: Answer: $(x-4.5)^{2}+y^{2}=(4.5)^{2}$
26. Consider the circle $r=6 \cos \theta$ and the cardioid $r=2+2 \cos \theta$.

(a) Mark points on both curves where $\theta=0, \frac{\pi}{4}$, and $\frac{\pi}{2}$.
(b) Shade in the area inside the circle and outside the cardioid.
(c) Find the area (which you shade) inside the circle and outside the cardioid.

Solution: Answer: $\int_{0}^{\pi / 3} 2\left(8 \cos ^{2} \theta-1-2 \cos \theta\right) d \theta=4 \pi$.
27. Below is the plot of the polar equation $r=\sin \theta+\cos \theta$.

Fill in the table below, use it to determine the orientation of the curve (direction of increasing θ), and find the equation of the tangent line to the curve at $(x, y)=(0,0)$.

θ	$\sin \theta+\cos \theta$	(r, θ)	(x, y)
0			
$\pi / 4$			
$\pi / 2$			
π			

Solution:

Thinking about the problem: We can fill in the table using the polar equation and the conversion formulas from polar to Cartesian coordinates. To find the tangent line at $(x, y)=(0,0)$ we will find the value of θ at which the curve passes through the origin and then compute $d y / d x$ at that value of θ.

Doing the problem:

Using the formulas $x=r \cos \theta$ and $y=\sin \theta$ we find the following:

θ	$\sin \theta+\cos \theta$	(r, θ)	(x, y)
0	1	$(1,0)$	$(1,0)$
$\pi / 4$	$\sqrt{2}$	$(\sqrt{2}, \pi / 4)$	$(1,1)$
$\pi / 2$	1	$(1, \pi / 2)$	$(0,1)$
π	-1	$(-1, \pi)$	$(1,0)$

From the marked points already put on the circle, it is natural to guess $\theta=3 \pi / 4$ will correspond to the origin, and indeed for this value of θ we have $\sin \theta=1 / \sqrt{2}$ and $\cos \theta=-1 / \sqrt{2}$, so $r=1 / \sqrt{2}-1 / \sqrt{2}=0$ and thus the point is the origin.

To find the equation of the tangent line, we compute $\frac{d y}{d \theta}$ and $\frac{d x}{d \theta}$ at $\theta=3 \pi / 4$ and then take the ratio to get $\frac{d y}{d x}$. First, since $y=r \sin \theta$ and $r=\sin \theta+\cos \theta$,

$$
\frac{d y}{d \theta}=\frac{d r}{d \theta} \sin \theta+r \cos \theta=(\cos \theta-\sin \theta) \sin \theta+r \cos \theta=\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)+0=-1
$$

and since $x=r \cos \theta$ and $r=\sin \theta+\cos \theta$,

$$
\frac{d x}{d \theta}=\frac{d r}{d \theta} \cos \theta+r(-\sin \theta)=(\cos \theta-\sin \theta) \cos \theta-r \sin \theta=\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)\left(-\frac{1}{\sqrt{2}}\right)+0=1
$$

Therefore $\left.\frac{d y}{d x}\right|_{\theta=3 \pi / 4}=\frac{-1}{1}=-1$.

Therefore the tangent line through the origin has slope -1 , so its equation is $y=-x$.
28. Below is a graph of $r=2 \cos 4 \theta$. Determine the area enclosed by it.

Solution: Thinking about the problem: The graph has 8 petals, all with the same area, so the total area is 8 times the area of one petal. We will compute the area of one petal using the polar region area formula.

Doing the problem:

On the curve, when $\theta=0$ we have $r=2$, and $(r, \theta)=(2,0)$ is the rightmost point on the petal crossing the positive x-axis. We will find the area of this petal (see figure below).

The graph is at the origin for the first time with $\theta>0$ when $2 \cos (4 \theta)=0$ for the smallest $\theta>0$. That means $4 \theta=\pi / 2$, so $\theta=\pi / 8$. By symmetry, the petal containing $(2,0)$ is traced out for the continuous range of angles $-\pi / 8 \leq \theta \leq \pi / 8$. (While $-\pi / 8=15 \pi / 8$ as polar angles, the graph for $\pi / 8 \leq \theta \leq 15 \pi / 8$ is not the petal above, but all the others! Do you
see why?) The area of the petal above is therefore

$$
\begin{aligned}
\int_{-\pi / 8}^{\pi / 8} \frac{1}{2}(2 \cos 4 \theta)^{2} d \theta & =\int_{0}^{\pi / 8}(2 \cos 4 \theta)^{2} d \theta \text { since } \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x \text { for even } f(x) \\
& =\int_{0}^{\pi / 8} 4 \cos ^{2}(4 \theta) d \theta \\
& =\int_{0}^{\pi / 8} 4 \cdot \frac{1+\cos (8 \theta)}{2} d \theta \text { since } \cos ^{2} x=\frac{1+\cos (2 x)}{2} \\
& =\int_{0}^{\pi / 8}(2+2 \cos (8 \theta)) d \theta \\
& =\left.\left(2 \theta+\frac{1}{4} \sin (8 \theta)\right)\right|_{0} ^{\pi / 8} \\
& =\left(\frac{2 \pi}{8}+\frac{1}{4} \sin (\pi)\right)-\left(0+\frac{1}{4} \sin (0)\right) \\
& =\frac{\pi}{4} \operatorname{since} \sin (\pi)=0 .
\end{aligned}
$$

Therefore the area enclosed by the whole graph (8 petals) is $8(\pi / 4)=2 \pi$.

6 9.1 Modeling with differential equations

29. (WebAssign 9.1 differential equations)
(a) For what values of k does the function $y=\cos (k t)$ satisfy the differential equation $4 y^{\prime \prime}=-9 y$?

Solution: Answer: $k=-\frac{3}{2}, k=\frac{3}{2}$
(b) Circle all functions which are solutions to $4 y^{\prime \prime}=-9 y$. (Possibly none or all).

1. $y=-\cos \left(\frac{3 t}{2}\right)$

Solution: Answer: Yes
2. $y=\cos \left(\frac{3 t}{2}\right)+1$

Solution: Answer: No
3. $y=\sin \left(\frac{3 t}{2}\right)$

Solution: Answer: Yes

4. $y=\sin \left(\frac{3 t}{2}\right)+\cos \left(\frac{3 t}{2}\right)$

Solution: Answer: Yes

(c) True or false? Every member of the family of functions $y=\frac{4 \ln (x)+C}{x}$ is a solution of the differential equation

$$
x^{2} y^{\prime}+x y=4
$$

Solution: Answer: True. Show this by substituting y and y^{\prime} into the differential equation.
(d) Find a solution of the differential equation $x^{2} y^{\prime}+x y=4$ that satisfies the initial condition $y(1)=2$.

Solution: Answer: $y=\frac{4 \ln (x)+2}{x}$.
(e) Find a solution of the differential equation $x^{2} y^{\prime}+x y=4$ that satisfies the initial condition $y(2)=1$.

Solution: Answer: $y=\frac{4 \ln (x)+2-4 \ln (2)}{x}$.
(f) Find a solution of the differential equation $x^{2} y^{\prime}+x y=4$ that satisfies the initial condition $y(3)=1$.

Solution: Answer: $y=\frac{4 \ln (x)+3-4 \ln (3)}{x}$.
(g) What can you say about a solution of the differential equation $y^{\prime}=-\frac{1}{2} y^{2}$ just by looking at the differential equation? Circle all possibilities.

1. The function y must be equal to 0 on any interval on which it is defined.

Solution: Answer: no.
2. The function y must be strictly increasing on any interval on which it is defined.

Solution: Answer: no.
3. The function y must be increasing (or equal to 0) on any interval on which it is defined.

Solution: Answer: no.
4. The function y must be decreasing (or equal to 0) on any interval on which it is defined.

Solution: Answer: correct.
5. The function y must be strictly decreasing on any interval on which it is defined.

Solution: Answer: no.
(h) Verify that all members of the family $y=\frac{2}{x+C}$ are solutions of the differential equation $y^{\prime}=-\frac{1}{2} y^{2}$.
(i) Write a solution of the differential equation $y^{\prime}=-\frac{1}{2} y^{2}$ that is not a member of the family $y=\frac{2}{x+C}$.

Solution: Answer: $y=0$
(j) Find a solution of the initial-value problem. $y^{\prime}=-\frac{1}{2} y^{2} \quad y(0)=0.1$

Solution: Answer: $\frac{2}{x+20}$
(k) Find a solution of the initial-value problem. $y^{\prime}=-\frac{1}{4} y^{2} \quad y(0)=0.2$

Solution: Answer: $\frac{4}{x+20}$
(l) Find a solution of the initial-value problem. $y^{\prime}=-\frac{1}{3} y^{2} \quad y(0)=0.5$

Solution: Answer: $\frac{3}{x+6}$
(m) Find a solution of the initial-value problem. $y^{\prime}=-\frac{1}{6} y^{2} \quad y(0)=0.5$

Solution: Answer: $\frac{6}{x+12}$
(n) A population is modeled by the differential equation

$$
\frac{d P}{d t}=1.1 P\left(1-\frac{P}{4000}\right)
$$

1. For what values of P is the population increasing?

Solution: Answer: $(0,4000)$. Explanation: You need $1-P / 4000>0$ and $P>0$.
2. For what values of P is the population decreasing?

Solution: Answer: $(4000, \infty)$. Explanation: You need $1-P / 4000<0$ and $P>0$.
3. What are the equilibrium solutions?

Solution: Answer: $P=4000$ and $P=0$. Explanation: You need $d P / d t=0$.
(o) A function $y(t)$ satisfies the differential equation

$$
\frac{d y}{d t}=y^{4}-8 y^{3}+15 y^{2}
$$

1. What are the constant solutions of the equation?

Solution: Answer: $y=0, y=3$, and $y=5$
2. Sketch the polynomial $t^{4}-8 t^{3}+15 t^{2}$. In particular, mark the x-intercepts.
3. For what values of y is y increasing?

Solution: Answer: When y is in one of the intervals $(-\infty, 0),(0,3),(5, \infty)$
4. For what values of y is y decreasing?

Solution: Answer: When y is in the interval $(3,5)$
30. (a) True or false? Every differential equation has a constant solution. (If T, explain. If F , give a counterexample.)

Solution: Answer: False. There are many possible counterexamples: think of a function $g(y)$ which has no zeros. You can use $\frac{d y}{d x}=g(y)$ as a counterexample.
(b) Consider the differential equation $\frac{d y}{d t}=5-2 y$.
i. Find all constant solution/s.

Solution: Answer: $y=5 / 2$
ii. Which of the following is a family of solutions? You may need to circle more than one.

$$
y(t)=1+K e^{-2 t} \quad y(t)=-K e^{-2 t} \quad y(t)=\frac{5}{2}+K e^{-2 t} \quad y(t)=\frac{5}{2}-K e^{-2 t}
$$

Solution: Answer: $y(t)=\frac{5}{2}+K e^{-2 t} \quad y(t)=\frac{5}{2}-K e^{-2 t}$
iii. Which of the functions below satisfy the differential equation $y^{\prime \prime}+y=\sin x$?
(a) $y=\sin x$
(b) $y=\cos x$
(c) $y=\frac{1}{2} x \sin x$
(d) $y=-\frac{1}{2} x \cos x$

Solution:

Thinking about the problem: First we will find y^{\prime} and then $y^{\prime \prime}$ for each of the functions and then compute $y^{\prime \prime}+y$ in each case to see if we get $\sin x$.

Doing the problem:
(a) $y=\sin x \Longrightarrow y^{\prime \prime}=-\sin x$

$$
\Longrightarrow y^{\prime \prime}+y=0
$$

(b) $y=\cos x \Longrightarrow y^{\prime \prime}=-\cos x$

$$
\Longrightarrow y^{\prime \prime}+y=0,
$$

(c) $y=\frac{1}{2} x \sin x \Longrightarrow y^{\prime \prime}=\cos x-\frac{1}{2} x \sin x$
$\Longrightarrow y^{\prime \prime}+y=\cos x$,
(d) $y=-\frac{1}{2} x \cos x \Longrightarrow y^{\prime \prime}=\sin x+\frac{1}{2} x \cos x$

$$
\Longrightarrow y^{\prime \prime}+y=\sin x
$$

The only solution to $y^{\prime \prime}+y=\sin x$ among the four functions here is (d) $y=-\frac{1}{2} x \cos x$.
31. (a) Draw a rough sketch of a possible solution to the logistic differential equation $\frac{d P}{d t}=5 P\left(1-\frac{P}{8}\right)$. You do not need to solve this differential equation to draw a rough sketch.

Solution: See sketch in Notes Sec 9.1, or watch https: //wwu.khanacadeny.org/nath/ap-calculus-bc/bc-diff-equations/bc-1ogistic-mode1s/e/1ogistic-differential-equation

7 9.3 Separable differential equations

32. (a) Find the solution of the differential equation that satisfies the given initial condition.

$$
\frac{d y}{d x}=\frac{x}{y}, \quad y(0)=-9
$$

Solution: Answer: $y=-\sqrt{x^{2}+81}$
(b) Find the solution of the differential equation that satisfies the given initial condition.

$$
x y^{\prime}+y=y^{2}, \quad y(1)=-8
$$

Solution:

$$
\begin{aligned}
x y^{\prime} & =y^{2}-y \\
x \frac{d y}{d x} & =y^{2}-y
\end{aligned}
$$

Rewrite in differential form:

$$
\begin{aligned}
\frac{d y}{y^{2}-y} & =\frac{1}{x} d x \\
\int \frac{d y}{y(y-1)} & =\int \frac{1}{x} d x \\
\int\left(\frac{1}{y-1}-\frac{1}{y}\right) d y & =\int \frac{1}{x} d x \\
\ln (y-1)-\ln (y) & =\ln x+C \\
\ln \left(\frac{y-1}{y}\right) & =\ln x+C \\
\frac{y-1}{y} & =x e^{C} \\
1-\frac{1}{y} & =x e^{C}
\end{aligned}
$$

Now solve for y . You can rewrite $D=e^{C}$ to make it easier to find the constant, or leave e^{C} as is.

Answer: $y=\frac{8}{8-9 x}$
(c) Consider the differential equation $\left(x^{2}+15\right) y^{\prime}=x y$.
i. Find all constant solutions.

Solution: Answer: $y=0$
ii. Find all solutions.

Solution:

$$
\begin{aligned}
\int \frac{1}{y} d y & =\int \frac{x}{x^{2}+15} d x \\
\ln (y) & =\frac{1}{2}\left(x^{2}+15\right) \text { use u-substitution } \\
y & =\left(x^{2}+15\right)^{1 / 2}+K
\end{aligned}
$$

Answer: $y=K \sqrt{x^{2}+15}$
(d) A tank contains 500 L of brine with 15 kg of dissolved salt. Brine having .2 kg of salt per liter of water enters the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and is drained from the tank at $10 \mathrm{~L} / \mathrm{min}$. How much salt is in the tank after t minutes? After 20 min ? In the long run?

Solution:

Thinking about the problem: Let $y(t)$ be the amount of salt in the tank at $t \mathrm{~min}$. We need the rate in and rate out of salt in $\mathrm{kg} / \mathrm{min}$. The rate in is the concentration of salt (in kg / L) multiplied by the rate of liquid entering the tank (in $\mathrm{L} / \mathrm{min}$), and the rate out is the concentration of salt multiplied by the rate of liquid leaving the tank. After finding $\frac{d y}{d t}$, we solve for $y(t)$ and $y(20)$.

Doing the problem: Let $y(t)$ be the amount of kg of salt in the tank at t minutes, so $y(0)=15$. The problem also says brine with $.2 \mathrm{~kg} / \mathrm{L}$ of salt enters at a rate of $10 \mathrm{~L} / \mathrm{min}$ and the whole mixture drains from the tank at $10 \mathrm{~L} / \mathrm{min}$. The concentration of salt entering the tank at time t is $.2 \mathrm{~kg} / \mathrm{L}$, so the rate of salt entering the tank at time t is

$$
\text { concentration } \cdot \text { rate of liquid entering the } \operatorname{tank}=.2 \frac{\mathrm{~kg}}{\mathrm{~L}} \cdot 10 \frac{\mathrm{~L}}{\min }=2 \frac{\mathrm{~kg}}{\min }
$$

The concentration of salt leaving the tank at time t is

$$
\frac{\text { amount of salt in tank }}{\text { volume of tank }}=\frac{y(t) \mathrm{kg}}{500 \mathrm{~L}},
$$

so the rate of salt leaving of the tank at time t is

$$
\text { concentration } \cdot \text { rate of liquid leaving the tank }=\frac{y(t) \mathrm{kg}}{500 \mathrm{~L}} \cdot 10 \frac{\mathrm{~L}}{\min }=\frac{y(t)}{50} \frac{\mathrm{~kg}}{\mathrm{~min}} .
$$

Therefore, in $\mathrm{kg} / \mathrm{min}$,

$$
\frac{d y}{d t}=(\text { rate in })-(\text { rate out })=2-\frac{y(t)}{50}=\frac{100-y(t)}{50}
$$

The differential equation $\frac{d y}{d t}=\frac{100-y}{50}$ is separable:

$$
\frac{d y}{d t}=\frac{100-y}{50} \Longrightarrow \frac{d y}{100-y}=\frac{d t}{50} \Longrightarrow \int \frac{d y}{100-y}=\int \frac{d t}{50} \Longrightarrow-\ln |100-y|=\frac{t}{50}+C
$$

Thus $\ln |100-y|=-t / 50-C$, so raising e to both sides, we get $100-y(t)= \pm e^{-C} e^{-t / 50}$. Setting $t=0$ here, $100-15= \pm e^{-C}$, so $100-y(t)=85 e^{-t / 50}$. Thus $y(t)=100-85 e^{-t / 50}$. This is the number of kilograms of salt in the tank after t minutes. After 20 minutes there is $y(20)=100-85 e^{-20 / 50} \approx 43.02 \mathrm{~kg}$ of salt.

In the long run, the concentration of salt in the tank must match that of incoming brine $(.2 \mathrm{~kg} / \mathrm{L})$, so the amount of salt in 500 L should tend to $(.2 \mathrm{~kg} / \mathrm{L})(500 \mathrm{~L})=100 \mathrm{~kg}$, which is consistent with $y(t) \rightarrow 100$ as $t \rightarrow \infty$.
(e) The differential equation below models the temperature of a $86^{\circ} \mathrm{C}$ cup of coffee in a $20^{\circ} \mathrm{C}$ room, where it is known that the coffee cools at a rate of $1^{\circ} \mathrm{C}$ per minute when its temperature is $70^{\circ} \mathrm{C}$. Solve the differential equation to find an expression for the temperature of the coffee at time t. (Let y be the temperature of the cup of coffee in ${ }^{\circ} C$, and let t be the time in minutes, with $t=0$ corresponding to the time when the temperature was $86^{\circ} \mathrm{C}$.)

$$
\frac{d y}{d t}=-\frac{1}{50}(y-20)
$$

Solution: Answer: $y=K e^{-t / 50}+20$. After considering the initial condition, we see that the temperature of the coffee at the time is described by $y=66 e^{-t / 50}+20$.
(f) A tank contains 8000 L of brine with 14 kg of dissolved salt. Pure water enters the tank at a rate of $80 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate.

1. How much salt is in the tank after t minutes?

Solution: Answer: $y=14 e^{-t / 100} \mathrm{~kg}$
2. How much salt is in the tank after 20 minutes?

Solution: Answer: $14 e^{-0.2} \mathrm{~kg}$. (Around 11.5 kg). You don't need to approximate.
(g) Find the orthogonal trajectories of the family of curves $y^{2}=8 k x^{3}$. Sketch these orthogonal trajectories.

Solution: Answer: $2 x^{2}+3 y^{2}=C$, a certain family of ellipses.

