Useful trig facts.

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1, \quad \tan ^{2} \theta+1=\sec ^{2} \theta, \quad \cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta), \quad \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) \\
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta, \quad \sin 2 \theta=2 \sin \theta \cos \theta \\
\sin \frac{\pi}{6}=\frac{1}{2}, \quad \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \quad \sin \frac{\pi}{4}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}, \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{3}=\frac{1}{2}
\end{gathered}
$$

Some derivatives and antiderivatives.

$$
\begin{array}{lll}
\frac{d}{d x} \sin (x)=\cos (x) & \frac{d}{d x} \cos (x)=-\sin (x) & \frac{d}{d x} \tan (x)=(\sec (x))^{2} \\
\frac{d}{d x} \csc (x)=-\csc (x) \cot (x) & \frac{d}{d x} \sec (x)=\sec (x) \tan (x) & \frac{d}{d x} \cot (x)=-(\csc (x))^{2} \\
\frac{d}{d x} \arcsin (x)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x} \arccos (x)=\frac{-1}{\sqrt{1-x^{2}}} & \frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}} \\
\frac{d}{d x} b^{x}=\ln (b) b^{x} & \int \sec x \mathrm{dx}=\ln |\sec x+\tan x|+C . & \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C \text { if } a \neq 0 .
\end{array}
$$

Fundamental Theorem of Calculus, part I.

Part 1: If f is continuous on $[a, b]$, then function g defined as

$$
g(x)=\int_{a}^{x} f(t) d t, \quad a \leq x \leq b
$$

satisfies $g^{\prime}(x)=f(x)$.

Fundamental Theorem of Calculus, part II.

If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any anti-derivative of f (ie. F is any function such that $F^{\prime}=f$).

Integration by parts fomula.

$$
\int u d v=u v-\int v d u
$$

Restricted domains for trig functions

$$
\begin{array}{lll}
\sin \theta \text { for }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} & \cos \theta \text { for } 0 \leq \theta \leq \pi & \tan \theta \text { for }-\frac{\pi}{2}<\theta<\frac{\pi}{2} \\
\csc \theta \text { for } \theta \text { in }[-\pi / 2,0) \cup(0, \pi / 2] & \sec \theta \text { for } \theta \text { in }[0, \pi / 2) \cup(\pi / 2, \pi] & \cot \theta \text { for } 0<\theta<\pi
\end{array}
$$

Partial Fraction Decomposition.

$$
\frac{1}{(x-a)(x-b)}=\frac{A}{x-a}+\frac{B}{x-b} \text { if } a \neq b, \text { and } \quad \frac{1}{x\left(x^{2}+a\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+a} \text { if } a \neq 0
$$

The Integral Test.

If $a_{n}=f(n)$ where $f(x)$ is a continuous, positive, decreasing function for $x \geq 1$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ is convergent.

Remainder Estimate for the Integral Test.

If $a_{n}=f(n)$, where $f(x)$ is a continuous, positive, decreasing function for $x \geq 1$ as above, suppose $S=\sum_{n=1}^{\infty} a_{n}$ converges. For $N \geq 1$, let $s_{N}=\sum_{n=1}^{N} a_{n}$ and $R_{N}=S-S_{N}$, so R_{N} is the N th remainder term. Then

$$
\int_{N+1}^{\infty} f(x) d x \leq R_{N} \leq \int_{N}^{\infty} f(x) d x
$$

Alternating series test.

A series of the form

$$
\sum_{n=1}^{\infty}(-1)^{n+1} b_{n} \quad \text { or } \quad \sum_{n=1}^{\infty}(-1)^{n} b_{n}
$$

where $b_{n} \geq 0$ for all n is called an alternating series. If

1. $b_{n+1} \leq b_{n}$ for all n large enough (ie. $\left\{b_{n}\right\}$ is an eventually decreasing sequence)
2. $\lim _{n \rightarrow \infty} b_{n}=0$
then the series converges.

Alternating Series Estimation Theorem

If $S:=\sum_{k=r}^{\infty}(-1)^{k} b_{k}$, where $b_{k}>0$, is the sum of an alternating series that satisfies

$$
\text { (i) } b_{k+1} \leq b_{k} \quad \text { and } \quad \text { (ii) } \lim _{k \rightarrow \infty} b_{k}=0
$$

then $\left|R_{N}\right|=\left|S-S_{N}\right| \leq b_{N+1}$, where $S_{N}:=\sum_{k=r}^{N}(-1)^{k} b_{k}$.

