NAME:

Read This First !

- From each number, choose a couple parts that seem the most challenging.
- You will earn a small amount of bonus 'style points' for a legible, coherent, and non-ambiguous paper. Your reader should not need to reread your solution several times to find a train of thought. In addition, you should use correct mathematical notations. This includes not writing an equal sign between two unequal objects, not treating the symbol ∞ like a number, and not attempting to multiply 0 with the symbol ∞.
- Please read each question carefully. Show ALL work clearly in the space provided. In order to receive full credit on a problem, solution methods must be complete, logical and understandable.
- Answers must be clearly labeled in the spaces provided after each question. Please cross out or fully erase any work that you do not want graded. The point value of each question is indicated after its statement. No books or other references are permitted.
- All technology (phones, calculators) and books/ notes should be placed inside your bag.

1. Extra credit: know the correct spelling of everyone's name and be able to identify everyone in the classroom.
2. For the following questions, circle TRUE or FALSE, and give a justification. True statements should be argued for using facts, theorems or definitions from class.
(a) If $\lim _{n \rightarrow \infty} a_{n}=0$ then the series $\sum a_{n}$ converges.

Justification:
(b) If $a_{n}>0, b_{n}>0$ for all $n, \sum b_{n}$ diverges, and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, then $\sum a_{n}$ diverges. \quad T \quad F

Justification:

(c) If $a_{n}>0$ for all $n \& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0$, then $\sum a_{n}$ is convergent by the ratio test \quad T \quad F Justification:
(d) If a_{n} and b_{n} are both positive for all n and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, then $\sum a_{n}$ is convergent by the limit comparison test $\mathbf{T} \quad \mathbf{F}$ Justification:
(e) The harmonic series $\sum 1 / n$ is convergent by the p-series test T \quad F Justification:
(f) We can use the ratio test alone to show the geometric series $\sum \frac{2^{n}}{3^{n}}$ converges
Justification:
(g) We can use the p-series test alone to show the series $\sum 2^{n} / 3^{n}$ converges

Justification:

(h) We can apply the monotonic sequence theorem to show that the geometric sequence $\left\{\frac{2^{n}}{3^{n}}\right\}_{n=1}^{\infty}$ is convergent $\mathbf{T} \quad \mathbf{F}$ Justification:
(i) We can apply the monotonic sequence theorem to show that the harmonic sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ is convergent $\quad \mathbf{T} \quad \mathbf{F}$ Justification:
(j) We can apply the squeeze theorem to show that the alternating harmonic sequence $\left\{\frac{(-1)^{n}}{n}\right\}$ is convergent $\mathbf{T} \quad \mathbf{F}$ Justification:
(k) It is impossible for a subset of a line to have infinitely many points and have length zero.

Justification:

(1) The divergence of the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for $0<p<1$ follows from divergence of the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ and the comparison test.

Justification:

(m) The convergence of the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for $p>1$ follows from divergence of the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ and the comparison test.
(n) Convergence of $\sum \frac{1}{n^{p}}$ for $p>1$ can be shown with the ratio test. T \quad F
Justification:
(o) Divergence of a p-series for $p<1$ can be shown with the ratio test. T \quad F Justification:
3. (a) State the contrapositive of the factual statement: "If the sequence $\left\{a_{n}\right\}$ is unbounded, then it is divergent".
(b) Is the contrapositive statement you wrote as your answer to part (a) true or false? Justification (explain or give a counterexample):
(c) The converse of part (a) is the following: "If the sequence $\left\{a_{n}\right\}$ is divergent, then $\left\{a_{n}\right\}$ is unbounded". Is this true or false? Justification (explain or give a counterexample):
4. Answer the following on the line provided.
(a) What is the 100 th term of the sequence $\{2,5,8,11, \ldots\}$?
(The terms 2 and 5 are the first and second term, respectively)
(b) Find a formula for the general term a_{n} of the sequence $\left\{1,-\frac{2}{5}, \frac{3}{25},-\frac{4}{125}, \frac{5}{625} \cdots\right\}$. Make sure to specify your starting value of n.
(c) Write the geometric series $4+2+1+\frac{1}{2} \cdots$ in standard form.
(summation notation \sum)
(d) Find the 4th term a_{4} in the recursive sequence $a_{n+1}=2 a_{n}+a_{n-1}$ when $a_{1}=1$ and $a_{2}=1$.
(e) Find the 7 th term a_{7} in the recursive sequence $a_{n+1}=a_{n}+a_{n-1}$ when $a_{1}=2$ and $a_{2}=3$.
(f) We can use geometric series to compute

$$
\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\ldots
$$

What fraction is this equal to?
(g) We can use geometric series to compute $0.9999 \ldots$. What fraction is this equal to?
(h) One of the two decimal expansions for a number is $2.449999 \ldots$. What's the other?
(i) Use geometric series to compute the fraction for $1.833333 \ldots$

Perform a sanity check against your answer.
(j) Use geometric series to compute the fraction for $1.08333333333333333 \ldots$

Perform a sanity check against your answer.
(k) Does the series $\sum_{n=1}^{\infty}-\ln \left(\frac{n}{2 n+7}\right)$ converge or diverge?
(1) Find the sum of the series $\sum_{k=0}^{\infty} 5\left(\frac{2}{3}\right)^{k}$.
(m) Find the sum of the series $\sum_{n=2}^{\infty} 5\left(\frac{(-6)^{n-1}}{7^{n}}\right)$.

Perform a sanity check against your answer.
(n) Find the sum of the series

$$
-5+3-\frac{9}{5}+\frac{27}{25}-\frac{81}{125}+\ldots
$$

Perform a sanity check against your answer.
(o) Write an expression for the nth term in the sequence
$\left\{\frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots\right\}$. (The terms $\frac{1}{2}$ and $\frac{1}{6}$ are the first and second terms in the sequence)
(p) Write an equivalent series with index summation beginning at $n=0$.
$\sum_{n=2}^{\infty} \frac{2^{n}}{(n-2)!}$
Perform a sanity check against your answer.
(q) Write an equivalent series with index summation beginning at $n=1$.
$\sum_{n=2}^{\infty} \frac{2^{n}}{(n-2)!}$
Perform a sanity check against your answer.
(r) For what values of k does the series $\sum \frac{5}{n^{k}}$ converge? Please explain.
(s) Find the values of A so that the series $\sum_{n=1}^{\infty} \frac{(A)^{n-1}}{3^{n-1}}$ is convergent. Please explain.
(t) Find the values of B so that the series $\sum_{n=1}^{\infty} \frac{(B-3)^{n-1}}{3^{n-1}}$ is convergent. Please explain.
(u) Find the values of C so that the series $\sum_{n=5}^{\infty} \frac{(C-2)^{n}}{3^{n+1}}$ is convergent. Please explain.
5. (a) (copy from Sec 11.1 page 696) Let $\left\{a_{n}\right\}$ be a sequence and let $L \in \mathbb{R}$ (this notation means that L is a real number). What does $\lim _{n \rightarrow \infty} a_{n}=L$ mean?
(b) (copy from Sec 11.1 page 696) Let $\left\{a_{n}\right\}$ be a sequence and let $L \in \mathbb{R}$ (this notation means that L is a real number). What does $\lim _{n \rightarrow \infty} a_{n}=L$ mean? Use the $\epsilon-N$ definition.
(c) (copy from Sec 11.2, page 708) Let $\left\{c_{n}\right\}$ be a sequence. What is a partial sum of $\left\{c_{n}\right\}$?
(d) (copy from Sec 11.2, page 708) Let $\left\{c_{n}\right\}_{n=1}^{\infty}$ be a sequence. We say that the infinite series $\sum_{n=1}^{\infty} c_{n}$ is convergent if
\qquad
words 'limit' and 'partial sums') If the above blank is not true, then we say that $\sum_{n=1}^{\infty} c_{n}$ is not convergent or divergent.
(e) Let $a_{k}=\frac{5 k^{2}-9}{k^{2}-4}$ for $k=3,4,5, \ldots$ Prove that the sequence $\left\{a_{k}\right\}_{k=3}^{\infty}$ converges to 5 using the $\epsilon-N$ definition.
(f) Let $a_{k}=\frac{1}{k^{2}+3}$ for k natural numbers. Prove that $\lim _{k \rightarrow \infty} a_{k}=0$ using the $\epsilon-N$ definition.
(g) Let $a_{k}=\frac{3 k+2}{2 k-1}$ for $k=1,2,3, \ldots$ Prove that $\lim a_{k}=\frac{3}{2}$ using the $\epsilon-N$ definition.
(h) Let $a_{k}=\frac{k^{2}+2}{k^{2}-3}$ for k natural numbers. Show that $\left\{a_{n}\right\}$ converges to 1 using the ϵ, N definition.
6. - Write the statement of the geometric series test/theorem as stated in Stewart Sec 11.2.

- Write the statement of the divergence test as stated in Stewart Sec 11.2 (either box no. 6 or 7 is OK).
- Write the statement of the limit comparison test as stated in Stewart Sec 11.4.
- Write the statement of the ratio test for positive terms as stated in Stewart Sec 11.6.
- Write the alternating series test/theorem as stated in Stewart Sec 11.5.

7. The following questions ask you to determine the converge/divergence of a series. To receive credit, give detailed explanation (for example, follow my answer key - to be posted).
(a) Determine whether the series $\sum_{k=1}^{\infty} \frac{k^{k}}{7^{k}(k)!}$ is convergent.
(b) Determine whether the series $\sum_{k=1}^{\infty} \frac{k^{k}}{2^{k}(k)!}$ is convergent.
(c) Determine whether the series $\sum_{n=3}^{\infty} \frac{6}{n \sqrt{n^{2}-8}}$ converges or diverges.
(d) Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+1}}{3 n^{3}-4 n+2}$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments.
(e) Determine whether the series $\sum_{n=1}^{\infty} \frac{n!}{7^{n}(n+8)!}$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments.
(f) Determine whether the series $\sum_{n=1}^{\infty} \frac{(n+8)!}{7^{n} n!}$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments. (This looks similar to above, but this isn't a typo).
(g) Determine whether the series $\sum_{n=1}^{\infty} \ln \left(\frac{3 n}{n+1}\right)$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments.
(h) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{5 n+3}$ converges or diverges. Make sure to state which test/s you use and provide justifying computations and arguments.
(i) Determine the convergence of $\sum_{k=1}^{\infty} k \cos \left(\frac{\pi k+1}{2 k}\right)$.
(j) Determine the convergence of $\sum_{k=1}^{\infty}\left(\frac{2 k}{5 k+5}+\frac{1}{(4)^{k}}\right)$
(k) Determine the convergence of $\sum_{k=1}^{\infty} \frac{2^{4 k+1}}{5^{2 k-1}}$. If this series is convergent, compute its sum.
(l) Determine the convergence of $\sum_{k=2}^{\infty} \frac{8^{3 k+1}}{9^{2 k-1}}$. If this series is convergent, compute its sum.
8. Review pg 4-5 of https://egunawan.github.io/spring18/notes/notes4_4lhopitals_rule.pdf
(a) Compute $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{3 n}$.
(b) Compute $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{n}$.
(c) Compute $\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{5 n}$.
(d) Compute $\lim _{n \rightarrow \infty} n^{2} e^{-n}$.
(e) Compute $\lim _{n \rightarrow \infty} \frac{\ln n}{n}$.
(f) Compute $\lim _{n \rightarrow \infty} \frac{n \sin n}{n^{2}+1}$.
9. Consider the series $\sum a_{n}=\sum_{n=2}^{\infty} \frac{\cos (n \pi)}{n-1}$.
(a) What are the first three terms in the series?
(b) Is the series convergent? You must justify.
(c) Is the series $\sum a_{n}=\sum_{n=2}^{\infty} \frac{|\cos (n \pi)|}{n-1}$ convergent? You must justify.
10. (a) Define an alternating series.
(b) State the alternating series test.
(c) Determine whether the series

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{k=1}^{\infty} \frac{(-1)^{n-1}}{n}
$$

is convergent or divergent.
(d) Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{n} 3 n}{4 n-1}$ is convergent or divergent.
(e) Determine whether the series $\sum_{k=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+1}$ converges or diverges.
11. (a) Evaluate $\lim _{n \rightarrow \infty} e^{-n} \sqrt{n}$.
(b) Determine whether $\sum_{n=0}^{\infty} e^{-n} \sqrt{n}$ converges or diverges.
(c) Evaluate $\lim _{n \rightarrow \infty} \frac{(\ln (n))^{2}}{n^{2}}$.
(d) Determine whether $\sum_{n=1}^{\infty} \frac{(\ln (n))^{2}}{n^{2}}$ converges or diverges.
(e) Suppose $\sum_{n=1}^{\infty} a_{n}$ is a series with the property that

$$
a_{1}+a_{2}+\cdots+a_{n}=2-3(0.8)^{n}
$$

State whether $\sum_{n=1}^{\infty} a_{n}$ converges or diverges. If it converges, find its sum.
12. Determine whether each series converges or diverges.
a.) $\quad \sum_{n=1}^{\infty} \frac{\ln n}{n}$
b.) $\sum_{n=4}^{\infty} \frac{1}{2^{n}-9}$
i.) $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}$
ii.) $\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}$

More practice examples of series with only positive terms: https://egunawan.github.io/spring18/notes/notes11_ strategy_pos_terms_practice.pdf

