The Box-Ball System: Soliton Decomposition and Robinson-Schensted algorithm (University of Connecticut Math REU 2020)

2020 MRC workshop: Combinatorial Applications of Computational Geometry and Algebraic Topology

Monday, July 27, 2020

Ben Drucker Eli Garcia Aubrey Rumbolt Rose Silver Slides are available on<https://egunawan.github.io/reu20mrc/reu20mrc.pdf>

Motivation: Soliton waves

- In At time $-\infty$, soliton waves are traveling through space at different speeds, not minding each other.
- \triangleright At some time, they begin to collide with one another, causing interference, and for a while you have a mess.
- In But eventually by time $+\infty$ the interference sorts itself out, and the solitons continue on their way as if it hadn't happened.

Start with an initial configuration $\pi = \pi_1 \pi_2 \pi_3 \dots \pi_k$, where π is a permutation.

Step 1: Write the permutation on a strip of infinite boxes:

4 5 2 3 6 1 t = 0

Step 2: To complete a box-ball move, let each number (or "ball") jump to the next available spot (or "box") to the right. First move 1, then move 2, and so on.

$$
t = 0 \quad \begin{array}{|c|c|c|c|c|c|c|c|} \hline 4 & 5 & 2 & 3 & 6 & 1 \\ \hline 4 & 5 & 2 & 3 & 6 & 1 \\ \hline \end{array}
$$

Step $3:$ Continue moving numbers from smallest to largest to their nearest available spots until every number in the permutation has been moved.

We are now at the $t = 1$ state and we have completed one BBS move.

Step $4:$ Continue making BBS moves.

(Here, 4 moves are shown).

Note. (Backwards BBS)

In Move balls from largest-to-smallest to their nearest available spaces to the left.

In The time-values after each backwards box-ball move now **decrease**.

Box-Ball System: Soliton Decomposition

At a certain point, the system reaches a *steady state* where:

- \triangleright blocks of increasing sequences (or *solitons*) move together at a speed equal to their length.
- \triangleright the sizes of the solitons are weakly increasing from left to right
- In order of the solitons remain unchanged

Step 5: After reaching steady state, create a *soliton decomposition* diagram $SD(\pi)$ by stacking solitons from right to left.

t = 4 ⁴ ² ⁵ ¹ 3 6

The shape of the diagram always forms a partition (weakly decreasing sequence of positive integers):

Solution decomposition SD(
$$
\pi
$$
) = $\frac{\begin{vmatrix} 1 & 3 & 6 \\ 2 & 5 \end{vmatrix}}{\begin{vmatrix} 4 \end{vmatrix}}$ with shape (3, 2, 1).

REU Questions.

When does a permutation reach its steady-state? How many permutations in S_n first reach its steady-state at a given time t?

Tableaux

Definition. (Young Tableaux)

- \blacktriangleright A tableau is an arrangement of numbers $\{1, 2, ..., n\}$ in Young diagram (sequence of weakly decreasing rows).
- \blacktriangleright A tableau is *standard* if the rows and columns are increasing sequences.
- \triangleright The *reading word* of a standard Young tableau is the permutation formed by concatenating the rows of the tableau from bottom to top.

Example. (Standard Young Tableau)

 $\begin{array}{r} 12 \\ 34 \\ 5 \end{array}$ is a standard tableau. Its reading word is 53412. $\begin{array}{r} 12 \\ \hline 4 \\ \hline 5 \\ 3 \end{array}$ is a nonstandard tableau.

REU Question.

When is a soliton decomposition standard?

Robinson-Schensted insertion algorithm

- \blacktriangleright The Robinson-Schensted (RS) insertion algorithm is a famous bijection from permutations to pairs of standard tableaux.
- If Given a permutation $\pi = \pi_1 \cdots \pi_n$, the first tableau in the pair, denoted $P(\pi)$, is called the insertion tableau or P-tableau of π .

REU Question.

For what permutations π do we have $SD(\pi) = P(\pi)$?

Soliton decomposition vs P-tableau

Theorem

The following are equivalent:

- 1. $SD(\pi) = P(\pi)$.
- 2. $SD(\pi)$ is a standard tableau.

Conjecture

The following is equivalent to (1) and (2).

3. $\sin SD(\pi) = \sin P(\pi)$.

Knuth Relations

Definition

Suppose π , $\sigma \in S_n$ and $x < y < z$.

 $\triangleright \pi$ and σ differ by a Knuth relation of the **first kind** (K_1) if

 $\pi = x_1...yxz...x_n$ and $\sigma = x_1...yzx...x_n$

 $\triangleright \pi$ and σ differ by a Knuth relation of the **second kind** (K_2) if $\pi = x_1...x_2y...x_n$ and $\sigma = x_1...z_1y...x_n$

 $\blacktriangleright \pi$ and σ differ by Knuth relations of **both kinds** (K_B) if

 $\pi = x_1...y_1xzy_2...x_n$ and $\sigma = x_1...y_1zxy_2...x_n$ for $x < y_1, y_2 < z$

Soliton Decomposition and Knuth moves

In Let r denote the reading word of $P(\pi)$. The RSK theory tells us there is a path of Knuth moves from π to r.

Theorems

- If there exists a path from π to r such that no move along the path is K_B , then $sh SD(\pi) = sh P(\pi).$
- If there exists a path from π to r containing an odd number of K_B moves, then $SD(\pi) \neq P(\pi)$.

Results Involving Steady-State Times

Let $a_{n,t}$ be the number of permutations in S_n which first reach their soliton decompositions at time t. Let $F_n(x) = a_{n,0} + a_{n,1}x + a_{n,2}x^2 + a_{n,3}x^3 + ...$ be the generating function of the sequence $\{a_{t,n}\}_{t>0}$.

Theorem: classification of permutations with steady-state value of $t = 0$

- A permutation r reaches its soliton decomposition at $t = 0$ if and only if r is the reading word of a standard tableau.
- In particular, the constant value of $F_n(x)$ is the number of standard tableaux with *n* boxes.

Theorem: a class of permutations with steady-state value of $t = 1$

If a permutation π is related to a reading word of a standard tableau by one K_1 or K_1 move (but not K_B), then π first reaches its soliton decomposition at $t = 1$.

$n-3$ conjecture

The ge[n](#page-11-0)erating function $F_n(x)$ is a polynomial of degree at [mos](#page-11-0)t $n-3$ $n-3$ [.](#page-0-0)

Insertion algorithm for soliton decomposition

"Carrier" Algorithm

 \triangleright Given a BBS state at time t, compute the state at time $t + 1$

Theorem: "M-carrier" algorithm and insertion algorithm

 \blacktriangleright Given a BBS state at time t, compute the state at time $t + M$

Work in progress: RSK-like insertion algorithm for soliton decomposition

- ▶ Define an "unlimited-carrier" algorithm
- \triangleright Compute the soliton decomposition using insertion/bumping similar to Robinson-Schensted (RS) insertion algorithm.
- \blacktriangleright When $SD(\pi) = P(\pi)$, the "unlimited-carrier" algorithm is equivalent to the usual RS insertion algorithm

Thank You!