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Constrinchon

Chain lengths in the Tamari lattice Edward Early

D)

2,n — 1,n), and then ends at (n,n,...,n,n — 2,n,n). This chain has four
fewer elements than the long one, as desired, and it is not hard to see that
the two chains are disjoint. The key idea here was to take advantage of the
crossing covers highlighted in Figure 2. Note that it would have been easier
to construct two chains of length % by not having them cross, but it is
interesting to see that we really can get disjoint chains of length A;(7},) and

Ao (Th).
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Figure 2: The poset Us.

To show that this does indeed give us \o(7T,,) = A\ (T,,) — 4, we prove
that T,, can be decomposed into N = A\{(7},) @ + 1 antichains, four
of which consist of a single element. To this end, we start with the most
obvious decomposition into /N antichains.

Draw the Hasse diagram of T,, by starting with (1,2,...,n) at the bot-
tom, as level 0. Now each subsequent level consists of the minimal elements
of what’s left of 7T,,. It is not hard to see that level ¢ will consist of the
elements of 7,, whose components sum to @ + 1. These levels give us
a decomposition of T}, into N antichains, but unfortunately only the top
two levels ((n,n,...,n) and (n,n,...,n,n—1,n)) and the bottom level have
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