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1. Root systems

We begin with root systems, which are special sets of vectors. A Weyl group, a
type of finite Coxeter group, is a special subgroup of the isometries of a root system.
We will focus on the root system whose Weyl group is the symmetric group. First,
let E be the subspace of Rn+1 containing vectors whose entries sum to zero. (This
subspace is n-dimensional.) For example:

(2/3,−2/3, 0), (−5, 6,−1), (
√

3,
√

6,−
√

3−
√

6) ∈ E for n = 2

(1, 1,−1,−1), (0, 3, 2.1,−5.1), (10
√

5, 0, 6
√

5,−16
√

5) ∈ E for n = 3.

Define R to be the subset of E with integer coordinates and length
√

2. We call R
the root system An. For example:

(1,−1, 0), (0,−1, 1), (−1, 0, 1) ∈ R for n = 2

(1, 0, 0, 0,−1), (−1, 1, 0, 0, 0), (0, 0,−1, 0, 1) ∈ R for n = 4.

Figure 1. The root system A2.

Figure 2. The root system A3.
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We can explicitly describe α ∈ R: since its components sum to zero, are integers,
and |α| =

√
2, one component is 1, one component is -1, and the rest are zero. For

instance:

A2 = {(1,−1, 0), (−1, 1, 0), (1, 0,−1), (−1, 0, 1), (0, 1,−1), (0,−1, 1)}.
Thus we have |R| = n(n+ 1). We define the simple roots

α1 = (1,−1, 0, . . . , 0)

α2 = (0, 1,−1, 0, . . . , 0)

...

αn = (0, . . . , 1,−1).

Each simple root corresponds to a simple reflection, which is reflection through the
hyperplane perpendicular to the corresponding root. The root αi corresponds to
the reflection si swapping the ith and i+1th coordinates of x ∈ Rn+1. As we know,
these reflections generate the full symmetric group Sn+1. For this reason, W = Sn+1

is the Weyl group of the root system An. These simple roots can simplify (!) our
description of R. We have

R = {±(αi + · · ·+ αj) | 1 ≤ i ≤ j ≤ n}.
Naturally, we call the set

R+ = {(αi + · · ·+ αj) | 1 ≤ i ≤ j ≤ n}
the set of positive roots. Some examples and non-examples:

α2 ∈ R+

α1 + α2 + α3 ∈ R+

α3 + α4 ∈ R+

α1 + α5 /∈ R+

−α3 /∈ R+

α2 − α3 + α4 /∈ R+.

This description of R+ can be visually described using “staircase” diagrams,
where the dot in the ith column and jth row represents the positive root αi+· · ·+αj .
It has the additional benefit that two distinct roots are in the same row or column
if and only if their scalar product is 1.

Figure 3. Positive roots of A5
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2. Nature of the problem

We now build toward a recursive method to count the number of elements in
a commutation class of a reduced word. The basic idea of where the recursive
formula comes from is helpful for motivating the technical details. We start with
a non-identity element w ∈ W and a reduced word i = si1si2 · · · sil for w. Denote
the commutation class of i by [i]. Recall that a commutation move is a use of the
relation

si1 · · · sijsij+1
· · · sil = si1 · · · sij+1

sij · · · sil ,
where |ij−ij+1| ≥ 2. Now for each k = 1, . . . , n, we denote the elements of [i] whose
final letter is sk by Ik. Then

[i] =
⊔

1≤k≤n

Ik.

So we can break this down into a recursive problem:

(1) For each k, check whether there exists a word jk ∈ [i] ending with sk.
(2) If so, consider the word j′k obtained by removing sk from the end of jk.
(3) Count the elements of [j′k].

We come up with the formula

[i] =
⊔

1≤k≤n

[j′k].

This explains the recursive nature of the commutation class counting problem, but
in order to obtain a convenient method of computing the size of [i], we return to
thinking about positive roots.

3. Position and level functions

We now describe a way to associate a positive root with each prefix of i. For
1 ≤ k ≤ l, define

α(k) = si1si2 · · · sik−1
(αik).

We call these relevant roots and denote them

R(w) = {α(1), . . . , α(l)}.
As it turns out, the α(k) are distinct and an equivalent description of R(w) is

R(w) = {α ∈ R+ | w−1(α) ∈ R−}.
Now we define the position function

πi : R(w)→ N

α(k) 7→ k.

To represent πi visually, we use a staircase diagram where each root is replaced
with its image. For example, with i = s1s4s3s4s2s3s4s1s2s3, which is a reduced
word for w0 ∈ S5, this looks like:

Figure 4. An example πi function.
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We further define the level function λi : R(w)→ N based on πi using the following
rules:

(1) Go through each root α ∈ R(w) in order of their πi value.
(2) If λi is not defined for any roots sharing a row or column with α, then set

λi(α) = 1.
(3) Otherwise, set λi(α) = 1 + M, where M is the largest defined λi-value

sharing a row or column with α.

4. Counting a commutation class

Whew! The hard part is done. Just one more definition: a top root is a root
whose λi-value is the largest in its row and its column. The recursive process works
like this:

(1) Identify the top roots and try removing each of them, one at a time.
(2) Keep track of the resulting configurations. (Make note of how many of each

kind we get.)
(3) Repeat!

We work through this process with our example word.

5. Remark on bijection

The recursive formula described above is the most relevant and accessible result
from Bédard’s paper. However, we have built up the necessary background to state
another interesting result about commutation classes. The map φ that sends the
commutation class [i] to the function λi is injective. This comes from the fact that
two reduced words i and j are commutation equivalent if and only if λi = λj, which
has a fairly complicated proof. Injectivity means that if we restrict the codomain
of φ to its image, we get a bijection

φ : {[i] | i is a reduced word for w} → Fw,

where Fw is the image of φ. In fact, Fw admits a concrete description that is
unwieldy, but may be useful.


