The 2.1
(a)
$$e^{2} = 1$$
 (the identity operator)
(b) $\partial f = ee^{\pi}$
(c) $\partial e = e^{2\pi}$
(c) $\partial e = e^{2\pi}$
Freef of Then 2.1
Free The Then Then Then Then Then Then 2
Step 7-1 Freeze label 7-1, then apply ∂ to the remaining 2-chipast Then 2
So, we have $e = 8$.
Free Step 1 free Not $\partial = 8$.
Free Step 2 The 2 Then 2 T

(b) SP = 78*

(c) $S \gamma = \gamma S^{-1}$

$$F_{z} = \int_{u_{1}}^{u_{1}} \frac{u_{z}}{u_{z}} \qquad From \ Frg. 2$$

$$\int_{1}^{z} \frac{1}{2} \int_{1}^{u_{1}} \frac{1}{1} \int_{1}^{u_{1}} \frac{1}{2} \int_{1}^{u_{1}} \frac{1}{1} \int_{1}^{u_{1}} \frac{1}{2} \int_{1}^{u_{1}} \frac{1}{1} \int_{1}^{u$$

Figure 1: The promotion operator ∂ applied to a linear extension

Figure 2: The evacuation of a linear extension f

Then "freeze" the label p into place and apply ∂ to what remains. In other words, let P_1 consist of those elements of P labelled $1, 2, \ldots, p-1$ by $f\partial$, and apply ∂ to the restriction of ∂f to P_1 . Then freeze the label p-1 and apply ∂ to the p-2 elements that remain. Continue in this way until every element has been frozen. Let $f\epsilon$ be the linear extension, called the *evacuation* of f, defined by the frozen labels.

NOTE. A standard Young tableau of shape λ can be identified in an obvious way with a linear extension of a certain poset P_{λ} . Evacuation of standard Young tableaux has a nice geometric interpretation connected with the nilpotent flag variety. See van Leeuwen [18, §3] and Tesler [36, Thm. 5.14].

Figure 2 illustrates the evacuation of a linear extension f. The promotion paths are shown by arrows, and the frozen elements are circled. For ease of understanding we don't subtract 1 from the unfrozen labels since they all eventually disappear. The labels are always frozen in descending order p, p - 1, ..., 1. Figure 3 shows the evacuation of $f\epsilon$, where f is the linear extension of Figure 2. Note that (seemingly) miraculously we have $f\epsilon^2 = f$. This example illustrates a fundamental property of evacuation given by Theorem 2.1(a) below.

We can define *dual evacuation* analogously to dual promotion. In symbols, if $f \in \mathcal{L}(P)$