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Figure 1: The promotion operator ∂ applied to a linear extension
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Figure 2: The evacuation of a linear extension f

Then “freeze” the label p into place and apply ∂ to what remains. In other words, let P1

consist of those elements of P labelled 1, 2, . . . , p−1 by f∂, and apply ∂ to the restriction
of ∂f to P1. Then freeze the label p − 1 and apply ∂ to the p − 2 elements that remain.
Continue in this way until every element has been frozen. Let fε be the linear extension,
called the evacuation of f , defined by the frozen labels.

Note. A standard Young tableau of shape λ can be identified in an obvious way with
a linear extension of a certain poset Pλ. Evacuation of standard Young tableaux has a
nice geometric interpretation connected with the nilpotent flag variety. See van Leeuwen
[18, §3] and Tesler [36, Thm. 5.14].

Figure 2 illustrates the evacuation of a linear extension f . The promotion paths are
shown by arrows, and the frozen elements are circled. For ease of understanding we
don’t subtract 1 from the unfrozen labels since they all eventually disappear. The labels
are always frozen in descending order p, p − 1, . . . , 1. Figure 3 shows the evacuation of
fε, where f is the linear extension of Figure 2. Note that (seemingly) miraculously we
have fε2 = f . This example illustrates a fundamental property of evacuation given by
Theorem 2.1(a) below.

We can define dual evacuation analogously to dual promotion. In symbols, if f ∈ L(P )
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