Notes for PROBLEM II (part 2) Cambrian Lattices Kef: Papers by Nathan Reading (Last update: The June 16) Overview only Biven Thurs, June 11,2020 Lectures: Fri, June 12,2020 Mon, June 15,2020

We generalize the map η_{tamari} . Partition the set [n+i] = [1, 2, ..., n+i] into two sets, upper-barred set [n+i] and lower-barred set [n+i]

 $\mathcal{E}_{g}, \ \underline{[6]} = \{4, 6\}, \ \overline{[6]} = \{1, 2, 3, 5\}$

Let Q be a polygon W vertices 0,..., n+2 drawn from left to right Draw 0 and n+2 on the same horizontal line. Put upper-barred vertices above this horizontal line. Put lower-barred vertices below this horizontal line.

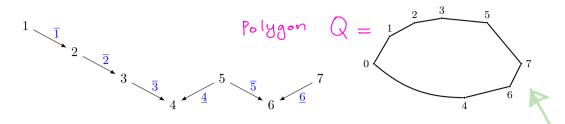


FIGURE 1. The polygon P(Q) and quiver Q with $[6] = \{4, 6\}$ and $\overline{[6]} = \{1, 2, 3, 5\}$.

First, use Q to partition the set [n + 1] into two sets, the *upper-barred* integers [n + 1] and the *lower-barred* integers [n + 1], as follows. Let $\overline{[n + 1]}$ be the set of all vertices i such that $i \to (i + 1)$ is in Q and let [n + 1] be the set of all vertices i such that $i \leftarrow (i + 1)$ is in Q.

Next, associate to Q an (n+3)-gon P(Q) with vertex labels $0, 1, 2, \ldots, n+2$. Draw the vertices $0, 1, \ldots, n+2$ in order from left to right so that: (1) the vertices 0 and n+2 are placed on the same horizontal line L; (2) the upper-barred vertices are placed above L; (3) the lower-barred vertices are placed below L. See Figure 1.

Given a permutation $\pi \in S_{n+1}$, we write π in one-line notation as $\pi_1\pi_2...\pi_{n+1}$, where $\pi_i = \pi(i)$ for $i \in [n+1]$. For each $i \in \{0, ..., n+1\}$, define $\lambda_i(\pi)$ to be a path from the left-most vertex 0 to the right-most vertex n+2 as follows. Let $\lambda_0(\pi)$ be the path from the vertex 0 to the vertex n+2 passing through all lower-barred vertices $\underline{i} \in [n+1]$ in numerical order. Thus $\lambda_0(\pi)$ is the path along the lower boundary edges of P(Q). Define $\lambda_1(\pi)$ as the piecewise linear path from 0 to n+2 passing through the vertices

$$\begin{cases} \underline{[n+1]} \cup \{\pi_1\}, & \text{if } \pi_1 \in \overline{[n+1]};\\ \underline{[n+1]} \setminus \{\pi_1\}, & \text{if } \pi_1 \in [n+1], \end{cases}$$

maintaining the numerical order of the vertices visited. Repeating this process recursively, the final path $\lambda_{n+1}(\pi)$ passes from 0 to n+2 through all upper-barred vertices $\overline{i} \in \overline{[n+1]}$. Thus $\lambda_{n+1}(\pi)$ is the path along the upper boundary edges of P(Q).

Definition 2.1. [Rea06] Define a map $\eta_Q \colon S_{n+1} \to \{\text{triangulations of } P(Q)\}, \pi \mapsto \eta_Q(\pi)$, where $\eta_Q(\pi)$ is the triangulation (including the boundary edges) of P(Q) that arises as the union of the paths $\lambda_0(\pi), \ldots, \lambda_{n+1}(\pi)$.

Remark 2.2. It is shown in [Rea06] that η_Q is surjective and that its fibers correspond to the congruence classes of a certain lattice congruence on the weak order on the symmetric group. The induced poset structure is a lattice called a *Cambrian lattice* of type A. More precisely, two triangulations are ordered $\mathcal{T} \leq \mathcal{T}'$ if there exist permutations $\pi \leq \pi'$ in the weak order such that $\eta_Q(\pi) = \mathcal{T}$ and $\eta_Q(\pi') = \mathcal{T}'$.

Example 2.3. Let Q be the quiver in Figure 1, where n = 5. Then $\overline{[6]} = \{\overline{1}, \overline{2}, \overline{3}, \overline{5}\}$ and $\underline{[6]} = \{\underline{4}, \underline{6}\}$. Let $\pi = 453126 \in S_6$, written in one-line notation.

Then the paths $\lambda_i(\pi)$ described above are as follows.

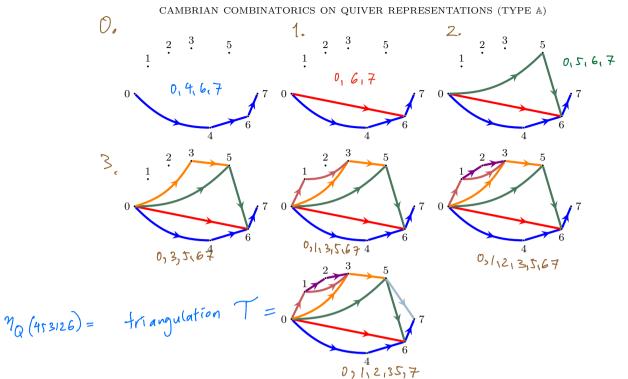
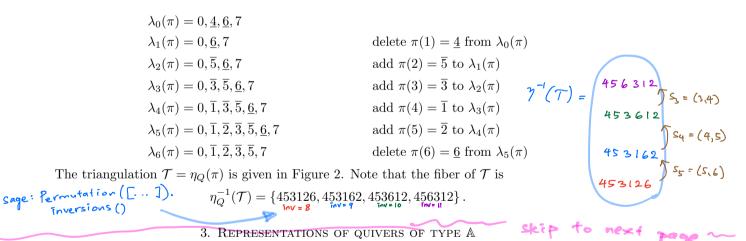


FIGURE 2. The paths $\lambda_i(453126)$ and triangulation for $\eta_Q(453126)$ from Example 2.3



Let k be an algebraically closed field, for example, $\mathbb{k} = \mathbb{C}$. Given a quiver Q, we denote by Q_0 the set of its vertices and by Q_1 its set of arrows. For $\alpha \in Q_1$, let $s(\alpha)$ be the source of α and $t(\alpha)$ be its target. A path from i to j in Q is a sequence of arrows $\alpha_1 \alpha_2 \dots \alpha_\ell$ such that $s(\alpha_1) = i$, $t(\alpha_\ell) = j$, and $t(\alpha_h) = s(\alpha_{h+1})$, for all $1 \leq h \leq \ell - 1$. The integer ℓ is called the *length* of the path. Paths of length zero are called *constant paths* and are denoted by e_i , $i \in Q_0$.

A representation $M = (M_i, \varphi_\alpha)$ of Q consists of a k-vector space M_i , for each vertex $i \in Q_0$, and a k-linear map $\varphi_\alpha \colon M_{s(\alpha)} \to M_{t(\alpha)}$, for each arrow $\alpha \in Q_1$. If each vector space M_i is finite dimensional, we say that M is finite dimensional, and the dimension vector $\underline{\dim} M$ of M is the vector $(\underline{\dim} M_i)_{i \in Q_0}$ of the dimensions of the vector spaces. For example, the representation in Figure 3 is a representation with dimension vector (0, 1, 1, 1, 1, 0, 0) of the type \mathbb{A}_7 quiver in Figure 1.

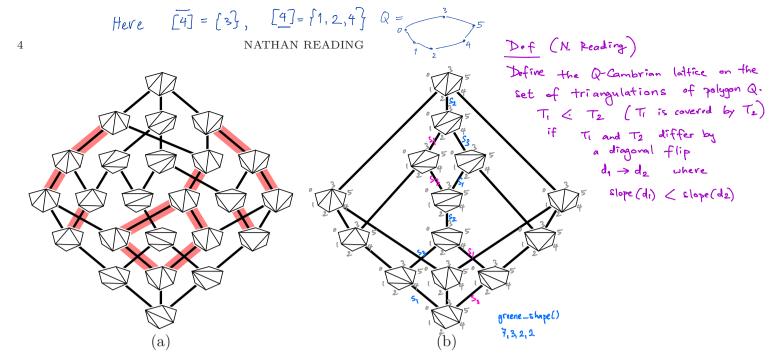


FIGURE 4. a: A non-Tamari permutations-to-triangulations map applied to every permutation in S_4 . b: A non-Tamari Cambrian lattice

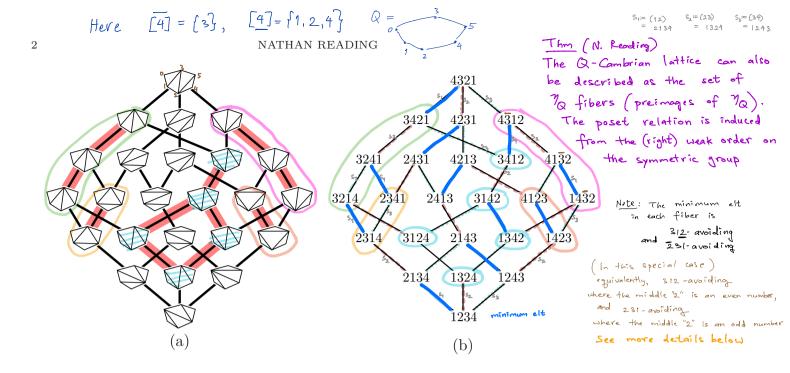
family of maps in the context of signed permutations. These families of maps arise quite naturally in the context of (equivariant) iterated fiber polytopes, as explained in [6] and [45, Section 4.3] and as summarized in [36, Sections 4, 6].

To generalize η , we alter the construction of the polygon Q by removing the requirement that the vertices 1 through n + 1 be located below the horizontal line containing 0 and n + 2. We keep the requirement that, for all i from 0 to n + 1, the vertex i is strictly further left than the vertex i + 1. Again we start with a path along the bottom edges of Q, and read the one-line notation of a permutation from left to right. When we read an entry whose corresponding vertex is on the bottom of Q, we **remove** that vertex from the path, as before. When we read an entry whose corresponding vertex into the path. Figure 4.a shows this new permutations-to-triangulations map applied to all of the permutations in S_4 , in the case where the vertices 1, 2, and 4 are on the bottom of Q and 3 is on the top. To avoid a profusion of notation, we use the symbol η to refer to any of the permutations-to-triangulations maps, tacitly assuming a choice of Q. We use the phrase "the Tamari case" to distinguish the original definition of Q and of η .

As another example, consider the case where all of the vertices 1 through n are **above** the line containing 0 and n + 2. In this case, the symmetries of the problem imply that η has the same pattern-avoidance properties as described above, except that "312" is replaced by "231" throughout the description, and "132" is replaced by "213" throughout.

When some vertices are on top of Q and others are on bottom, as in the example of Figure 4.a, the behavior of the map is a mixture of the "231-behavior" and the "312-behavior," as we now explain. The locations, top or bottom, of the vertices are recorded by upper- or lower-barring the symbols from 1 to n + 1. Thus, for example, we write $\overline{3}$ to indicate that the vertex 3 is on top of the polygon Q or we write $\underline{3}$ to indicate that 3 is on the bottom of Q. In [36, Proposition 5.7], it is shown that a permutation is a minimal element in its η -fiber if and only if it avoids

[36] Reading, Cambrian Lattices (06)



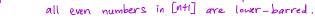
and the second second

Thm (N. Reading) Let $\gamma := \eta_Q$

 A permutation π is the minimum elt in its 7-fiber iff π is 312-avoiding and 231-avoiding
 A permutation π is the maximum elt in its 7-fiber iff π is 132-avoiding. and 213-avoiding.
 2.5 Bipartite Cambrian Lattices

Def ("Bipartite" Q-Cambrian lattice)

Consider the following Q. All odd numbers in [11+1] are upper - barred, &





(Note: where we put 1 and n+1 wouldn't make a difference in the pattern avoidance because 1 and n+1 are never the middle "2" in a pattern)

Then the Q-Cambrian lattice can be defined on the set

 $P = \begin{cases} \pi \in S_{n+1} & \text{ π avoids the pattern 312 with an even "middle $2"} \\ \pi & \text{ avoids the pattern 231 with an odd "middle $2"} \end{cases}$ where $x \leq y$ if

fyi: here we use the minimum elements of the 70 fibers

•
$$X W = Y$$
 for some $W = S_{i_1} S_{i_2} S_{i_3} \dots S_{i_k}$, where $i_k \in \{1, 2, \dots, n\}$
• $i_n V(X) + l = i_n V(Y)$

In other words, there is a path from x to y in the (right) weak order which goes up at each step.

RELY Exercise 7 (the bipartite analog of REU Exercise 8)

• Warm-up Consider a longest chain in the weak order Id $\frac{S_1}{2}$, $\frac{S_2}{2}$, $\frac{S_1}{2}$, $\frac{S_3}{2}$, $\frac{S_2}{2}$, $\frac{S_1}{2}$, $\frac{S_2}{2}$,

S1 S3 S2 S1 S3 S2	$2 = 43212S_2$ = 42312S_2
S1 S3 S2 S1 S3	
S1 S3 S2 S1	
$S_1 S_3 S_2$	- ~ 7 3 ~ ~
S1 S3	- × 1 4 3 € c
S ₁	= 2 1 3 4 5
Id	= 1 2 3 4

(i) Verify that each of the seven permutations in this chain is

For example, $S_1 > 3 >_2 = 2413$ has the subsequence 4,1,3 which fits the 312 pattern, but the "middle 2" is an odd number.

(ii) Verify that each of the seven permutations in this chain is

$$132$$
 - avoiding and $\overline{2}13$ - avoiding.
 $\overline{4}$
 $\overline{7}$
 \overline

· A longer warm-up

Verify that all $\binom{5}{2}$ +1=11 permutations in the chain from $Id = T_{min} = /23+5$ to ub= $T_{max} = 54321$ $Id = \frac{5_1}{2}, \frac{5_3}{3}, \frac{5_4}{3}, \frac{5_1}{3}, \frac{5_3}{3}, \frac{5_2}{3}, \frac{5_4}{3}, \frac{5_1}{3}, \frac{5_3}{3}, \frac{5_3}{3}, \frac{5_4}{3}, \frac{5_1}{3}, \frac{5_3}{3}, \frac{5_3}{3}, \frac{5_4}{3}, \frac{5_1}{3}, \frac{5_3}{3}, \frac{5_3}{3}, \frac{5_4}{3}, \frac{5_1}{3}, \frac{5_2}{3}, \frac{5_4}{3}, \frac{5_1}{3}, \frac{5_3}{3}, \frac{5_4}{3}, \frac{5_1}{3}, \frac{5_3}{3}, \frac{5_4}{3}, \frac{5_1}{3}, \frac{5_1}{3}, \frac{5_2}{3}, \frac{5_4}{3}, \frac{5_1}{3}, \frac{5_3}{3}, \frac{5_4}{3}, \frac{5_1}{3}, \frac{5_1}{3}, \frac{5_2}{3}, \frac{5_4}{3}, \frac{5_1}{3}, \frac{5_1}{3}, \frac{5_2}{3}, \frac{5_4}{3}, \frac{5_1}{3}, \frac{5_$

$$\begin{array}{c} & \text{for S}_{6}, \text{ have length } \begin{pmatrix} 6\\2 \end{pmatrix} : & \text{for example of the set of the set$$

• The REU Exercise 9 (i) (For Sn+1) Prove that all $\binom{n+1}{2}$ +1 permutations in the chain

If $\frac{S_1}{2}, \frac{S_2}{2}, \frac{S_3}{2}, \frac{S_2}{2}, \frac{S_4}{2}, \frac{S_6}{2}$ the bars are for clarification only $\frac{S_1}{2}, \frac{S_3}{2}, \frac{S_4}{2}, \frac{S_6}{2}, \dots$ $\frac{S_1}{2}, \frac{S_2}{2}, \dots$ of length $\frac{n(n+1)}{2}$ Are $\frac{S_{12}}{2}$ avoiding and $\frac{Z_3}{2}$ is avoiding. $\frac{1}{middle 2^n}$ is even $\frac{1}{middle 2^n}$ is odd (i) Prove that these $\binom{n}{2}$ + 1 permutations are $\frac{13}{2}$ - avoiding and $\frac{Z_{13}}{2}$ - avoiding. $\frac{1}{middle 2^n}$ is even $\frac{13}{middle 2^n}$ is odd

Note: May be more natural to use the chain $Id \rightarrow \cdots \xrightarrow{S_5} \xrightarrow{S_3} \xrightarrow{S_1} \xrightarrow{S_2} \xrightarrow{S_4} \xrightarrow{S_6} \cdots \xrightarrow{S_5} \xrightarrow{S_1} \xrightarrow{S_2} \xrightarrow{S_4} \xrightarrow{S_6} \cdots$

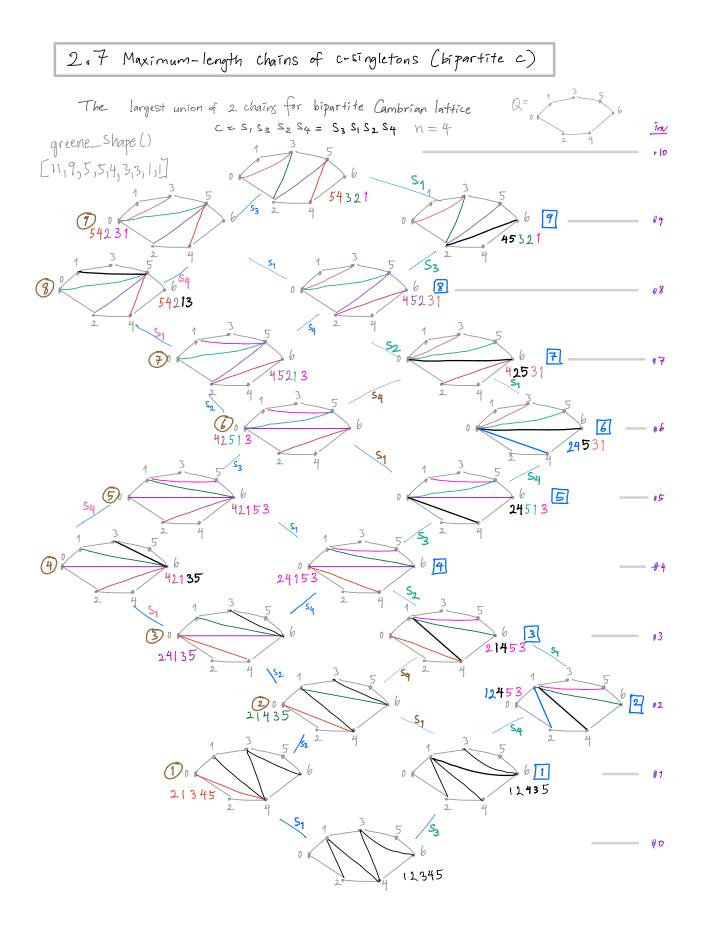
Computing 2, the Greene-Kleitman invariant for the bipartite Q Combrian lattice

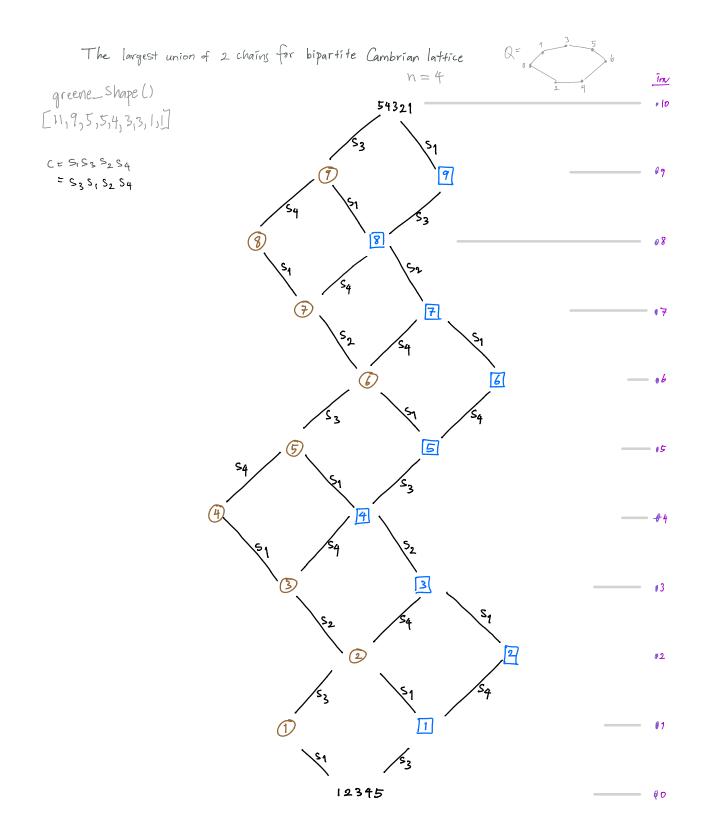
sage: A = Coxeter Group (['A', n]) # Same as the symmetric group Sn+1 sage: C = [i for i in range (1, n+1, 2)] + [i for i in range (2, n+1, 2)]# for example, c = [1, 3, 5] + [2, 4] if n=5 for S6 sage: c = tuple (c) sage : T = A. cambrian_lattice (c) sage: T. greene_shape() & tuple type sage: Tam = A. cambrian_lattice((1,2,...,n)) # Tamari lattice for Sntl sage: T. greene_shape() posets. Tamarilattice (n+1) Data and Conjectures Denote the bipartite Q Cambrian lattice we describe above by Cambalt or Cambbi or Calt or ... • For n = 4,5,6,7,8 (St, St, St, St, Sg), Sage computes $\lambda_2 = \lambda_1 - 2$ - Conjecture: this formula holds for all n>4 • For n = 6, 7, 8 (S_7, S_8, S_9) , Sage computes $\lambda_1 - \lambda_2 = 2$ and $\lambda_3 = \lambda_2$. - Conjecture: this formula holds for all n>6 • For $n = \mathcal{B}(S9)$, $\lambda _4 = \lambda _3 = \lambda _2$. - Conjecture: $\lambda _k = \lambda _{k-1} = \dots = \lambda _q = \lambda _3 = \lambda _2$ for large enough n. REU PROBLEM I (part 2) | think this is more promising than part 1 (i) Prove/disprove the conjecture for $\lambda_2 = \lambda_1 - 2$ for all $n \ge 4$. Imitate the Tamori lattice argument in Early's paper. The bipartite ase is even easier Possible strategy: • Construct a union of two chains of size $\binom{n+1}{2} + \binom{n+1}{2}$ $\begin{bmatrix} \binom{n+1}{2} + 1 + \binom{n+1}{2} + 1 \end{bmatrix} = 2 = n(n-1)$ $\begin{bmatrix} \binom{n+1}{2} + 1 + \binom{n+1}{2} + 1 \end{bmatrix} = 2$ = n(n-1) = 1 = 1 = 1construct an antichain cover of Cambalt consisting of (2)+1 lattice has the mission of the construct an antichain cover of Cambalt consisting of (2)+1 lattice has the mission · To show that this union size is maximum, antichains such that two of the antichains are singletons. and the maximum est. · For the realization, use either the triangulations of polygon Qalt 312- avoiding and 231-avoiding permutations, ٥r which are the same as c-sortable elements (see later part of doc). (ii) Trove/disprove the conjecture for $\lambda_3 = \lambda_2$ for all $n \ge 6$. Possible strategy: Initate the Tamari lattice argument in Early's paper.

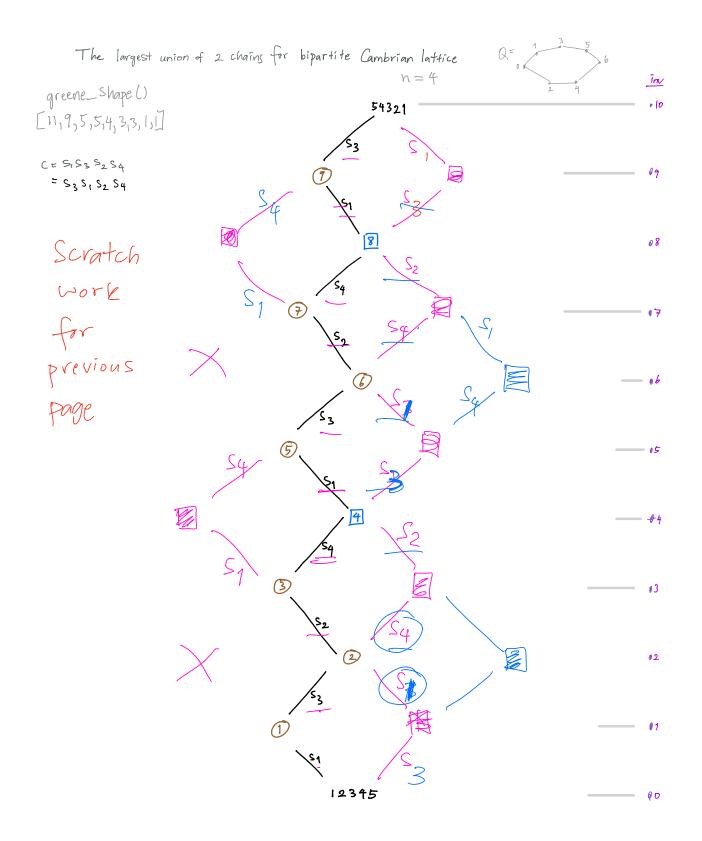
~ ended Fri June 12,2020~

Def "eta" Let $\eta := \eta_{Q}$ A permutation $\pi \in S_{n+1}$ s.t $\eta_c^{-1}(\eta(\pi)) = \{\pi\}$ is called a <u>c-simpleton</u>. Note: If Nc is the Tamari type, a permutation is a c-sigleton iff it is (i) 312 - avoiding and (ii) 132 - avoiding -· In general, of the singleton iff it is (i) 312- avoiding and 231-avoiding (ii) 132-avoiding and 213-avoiding. Lemma that you will need to use below If you follow a maximum-length chain from the minimum elt 123..., not of the weak order to the maximum eft $W_0 = n+1, n, \dots, 3, 2, 1$ such that every elt in the chain is a c-singleton, $S_{i_1} S_{i_2} \cdots S_{i_{n+1}}$ then we can get a new maximum-length chain of c-singletons by performing the following commutation (or short braid move): $S_{\overline{i}_1} S_{\overline{i}_2} \cdots S_K S_{4} \cdots S_{i(n+1)}$ Replace with Si Si 2 S S Si (n+1) where $|j-k| \gg 2$. Another Lemma

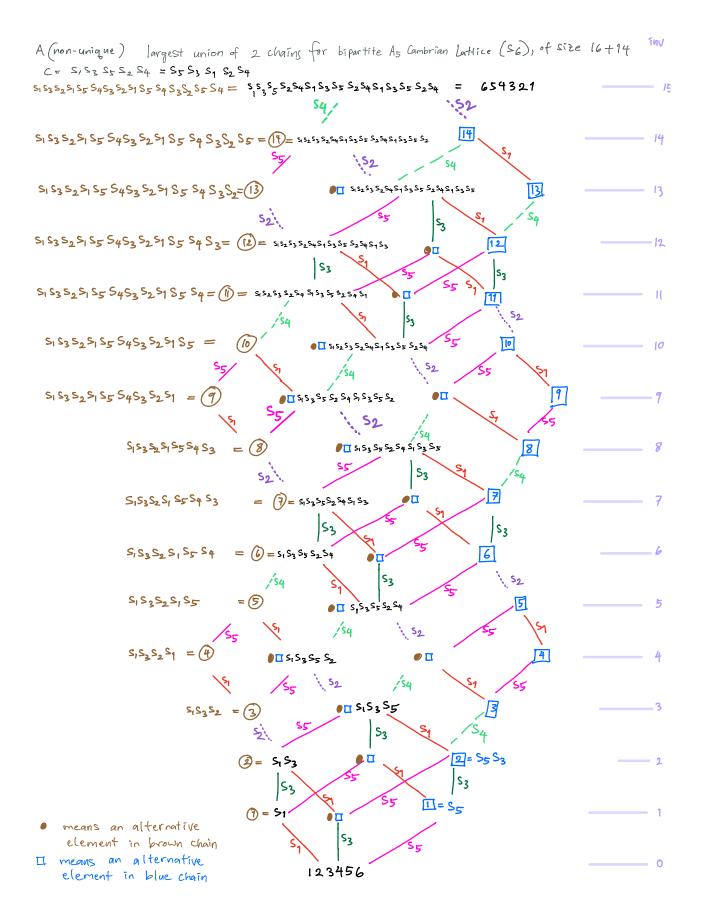
Every maximum-length chain of C-singletons can be achieved by applying a sequence of short braid moves from one maximum-length chain of C-singletons.

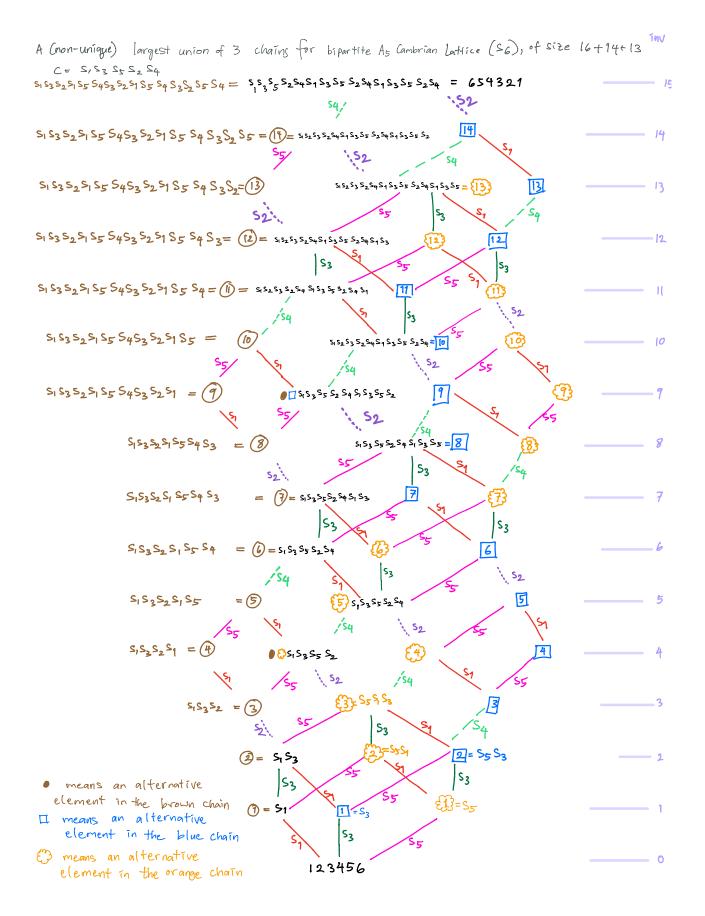






$$\begin{array}{c} \text{The chain from REU Exercise } & \text{inv} \\ f_{1} & \frac{5}{4} & \frac{1}{4} & \frac{1}{4}$$





REU Exercise 10

The Greene-Kleitman invariant for Qalt Cambrian lattice of type A_6 (S7) is $[22, 20, 20, 18, 16, 15, \cdots]$. (i) Starting from the length-21 chain $C = \frac{S_1}{S_3} \frac{S_3}{S_5} \frac{S_2}{S_2} \frac{S_4}{S_5} \frac{S_6}{S_2}$ or $C = \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_2} \frac{S_4}{S_6} \frac{S_6}{S_5} \frac{S_1}{S_2} \frac{S_2}{S_4} \frac{S_6}{S_6} \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_2} \frac{S_4}{S_6} \frac{S_6}{S_5} \frac{S_1}{S_2} \frac{S_2}{S_4} \frac{S_6}{S_6} \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_2} \frac{S_4}{S_6} \frac{S_6}{S_5} \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_2} \frac{S_4}{S_6} \frac{S_6}{S_5} \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_2} \frac{S_4}{S_6} \frac{S_6}{S_5} \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_2} \frac{S_4}{S_6} \frac{S_5}{S_5} \frac{S_3}{S_1} \frac{S_1}{S_2} \frac{S_2}{S_4} \frac{S_6}{S_5} \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_2} \frac{S_4}{S_6} \frac{S_5}{S_5} \frac{S_3}{S_1} \frac{S_1}{S_2} \frac{S_2}{S_4} \frac{S_6}{S_5} \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_2} \frac{S_4}{S_6} \frac{S_5}{S_5} \frac{S_3}{S_1} \frac{S_1}{S_2} \frac{S_2}{S_4} \frac{S_6}{S_5} \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_2} \frac{S_4}{S_6} \frac{S_5}{S_5} \frac{S_3}{S_1} \frac{S_1}{S_2} \frac{S_2}{S_4} \frac{S_6}{S_5} \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_2} \frac{S_4}{S_6} \frac{S_5}{S_5} \frac{S_3}{S_1} \frac{S_1}{S_2} \frac{S_4}{S_6} \frac{S_5}{S_5} \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_2} \frac{S_4}{S_6} \frac{S_6}{S_5} \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_2} \frac{S_4}{S_6} \frac{S_5}{S_5} \frac{S_5}{S_3} \frac{S_1}{S_1} \frac{S_2}{S_1} \frac{S_6}{S_1} \frac{S_6}{S_1}$

sketch all maximum-length chains of C-singletons by applying commutation (short braid) moves.

• The largest union (size 22+20+20) of 3 chains must in also be contained in the sketch, since the number 22+20+20 means that this union must be the union of three maximum-length chains of C-singletons. Id