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FROM THE TAMARI LATTICE TO CAMBRIAN LATTICES

AND BEYOND

NATHAN READING

Abstract. In this chapter, we trace the path from the Tamari lattice, via
lattice congruences of the weak order, to the definition of Cambrian lattices
in the context of finite Coxeter groups, and onward to the construction of
Cambrian fans. We then present sortable elements, the key combinatorial tool
for studying Cambrian lattices and fans. The chapter concludes with a brief
description of the applications of Cambrian lattices and sortable elements to
Coxeter-Catalan combinatorics and to cluster algebras.

1. A map from permutations to triangulations

The road from the Tamari lattice to Cambrian lattices starts with a simple map
from the set Sn+1 of permutations of {1, . . . , n+ 1} to the set of triangulations of
a convex polygon with n + 3 vertices. This map connects the Tamari lattice to
the weak order on permutations, and opens the door to understanding the Tamari
lattice in a broader lattice-theoretic context.

One of the many realizations of the Tamari lattice is as a partial order on trian-
gulations of a convex polygon. Specifically, take Q to be a convex (n + 3)-gon in
the plane and identify the vertices of Q with the numbers 0, 1, . . . , n+1, n+2. We
require that the vertices 0 and n+ 2 be on a horizontal line, with 0 to the left and
with all other vertices below that line. Furthermore, we require that the vertices 1
through n + 1 be placed so that, for all i from 0 to n + 1, the vertex i is strictly
further left than the vertex i + 1. A correct construction of Q, for n = 7, is shown
in the top-left picture of Figure 2 for the case n = 7.

A triangulation of Q is a tiling of Q by triangles whose vertices are contained in
the vertex set of Q. The triangulation is specified by the collection of n diagonals
of Q appearing as edges of the triangles. A diagonal flip on a triangulation of Q is
the operation of removing a diagonal of the triangulation to create a quadrilateral
from two triangles, and then inserting the other diagonal of the quadrilateral to
create a new triangulation. The Tamari lattice is a partial order on triangulations
of Q whose cover relations are given by diagonal flips. The two triangulations in
the cover differ by exactly one diagonal of Q, and the higher triangulation in the
cover relation is the one in which this diagonal has larger slope. The Tamari lattice,
for n = 3, is shown in Figure 1.

This definition of the Tamari lattice highlights its connection to the associahe-
dron. Since the vertices of the associahedron can be labeled by triangulations of a
fixed convex polygon such that edges are given by diagonal flips, the Hasse diagram
of the Tamari lattice is isomorphic to the 1-skeleton of the associahedron.
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Figure 1. a: The Tamari lattice. b: The weak order on permutations.
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Figure 2. The triangulation η(3246175)

To define the weak order, we first write permutations in one-line notation,
meaning that we represent a permutation x of {1, . . . , n+ 1} by the sequence
x1x2 · · ·xn+1, where xi means x(i). There is a cover relation x ! y in the weak
order whenever the one-line notations of x and y differ only by swapping a pair of
adjacent entries. The permutation x is the one in which the two entries appear in
numerical order, and y is the permutation in which the two entries appear out of
order. For example, the weak order on S4 is shown in Figure 1.b.

We now define a map η from Sn+1 to the set of triangulations of Q. Start with a
path along the bottom edges of Q, as shown in the first frame of Figure 2. Given a
permutation x ∈ Sn+1, read from left to right in the one-line notation for x. For each
entry, create a new path by deleting the corresponding vertex from the old path.
The triangulation η(x) is defined by the union of the sequence of paths, as illustrated
in Figure 2 for the permutation with one-line notation 3246175. Figure 3.a shows
the result of applying η to every permutation in S4. The shaded edges indicate
covering pairs in the weak order which map to the same triangulation.

This map and similar maps have appeared in many papers, including [6, 7, 29, 30,
36, 50]. The map can be seen in a broader context in the chapter by Rambau and
Reiner [31] in this volume, specifically by giving some thought to [31, Theorem 9]
and the accompanying figure.
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Figure 3. a: The map η applied to every permutation in S4. b:
The Tamari congruence on S4.

Björner and Wachs [7, Section 9] studied a map τ from permutations to binary
trees that is, up to a standard bijection from triangulations to binary trees, identical
to η. We describe their results in terms of the map η. First, the fiber η−1(∆) of each
triangulation ∆ is a non-empty interval in the weak order on Sn+1. A permutation
is the minimal element in its η-fiber if and only if it avoids the pattern 312. That
is, a permutation x is minimal in its fiber if and only if there is no sequence of
three (not-necessarily adjacent) entries in the one-line notation for x such that the
largest of the three is first, followed by the smallest of the three, and finally the
median-valued. Similarly, a permutation is the maximal element in its η-fiber if
and only if it avoids the pattern 132. For example, comparing Figures 1.b and 3.a,
we see that the permutation 4213 is not the minimal element of its η-fiber, and
indeed, the sequence 413 (or the sequence 423) is an instance of the pattern 312 in
the permutation 4213. However, 4213 is the maximal element in its η-fiber because
it avoids the pattern 132.

Björner and Wachs also showed that the weak order and the Tamari lattice
are closely related. Specifically, the restriction of the weak order to 312-avoiding
permutations is a sublattice of the weak order, and the restriction of η to this
sublattice is an isomorphism from the sublattice to the Tamari lattice. This is
readily seen in the case of S4 by inspection of Figures 1 and 3.a. The sublattice
of the weak order consisting of 312-avoiding permutations (and thus the Tamari
lattice) is also a quotient of the weak order in an order-theoretic sense. Indeed,
the results of [7] go most of the way to establishing something stronger: As we will
see in Section 2, the Tamari lattice is a lattice quotient (i.e. a lattice-homomorphic
image) of the weak order, because the map η is a lattice homomorphism. This is
the key insight that leads to the notion of Cambrian lattices.

Before we shift the discussion to lattice theory, we give a generalization, in a
more combinatorial direction, of the map η. We will see in Section 3 that this gen-
eralization is also an essential step towards Cambrian lattices. The generalization,
which was exploited in [36], draws on the description in [45, Section 4.3] of a similar
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Defy If Ey the set my of all elts z ofP satisfying XEZEY
is calledthe closed int between X andy
Here x is the minimum ett of x y and y is the maximum ett of Exy

Thm forTamari lattice Let 7 i Mtamari
The
P

y of each triangulation A is a nonempty interval in theweakorder on Sna
A permutation IT is the minimum ett in its 7 fiber Tff IT is 312 avoiding
A permutation it is the maximum elf in its 7 fiber Tff IT is 232 avoiding

Remy wejust saw three realizations of the Tamari lattice triangulations 312avoidingperms 132paevoridmigg
There are many maybe 1003 known realizations of the Tamari lattice
The papers by Early and Lim Zhang treat the elements as integer tuples
under Literature page Tamari lattices

Def The length of a chain C in a poset is the number of elements in C minus 1

REU Exercise 8 Everyoneshouldmake sure they can do Exercise 8

WIMP Consider the chain from Tinnin 1234 to Wo Imax 4321

Sz s S Sz S in S4dThin o o o 4321
This chain is of length 4 6 and has 1 7 permutations

siszszs.szsy 432ISSzSzS Sz 3421
swapposition 2and3S SzSzS 3241
swapposition

1and2
Si SzSz 2341

swapposition 3and4S Sz 2314
S 2134
Id I 234

i verify that these d tl permutations are 312 avoiding
f Verify that these tl permutations are 132 avoiding

A longer warmup
Verify that all 2 11 11 permutations in the chain from Id Timn 12345

to WoTma 5432

Id Eg 53 rs3 Is 2 Is Wo_54321
are also i 312avoiding andCii 132 avoiding

IThLRELExerciesCProve that all 2 tl permutations of Snit in the chain

Id 4 Is
I sa

I Snz
i

si Es
si

Are 312 avoiding
it Prove that they are also 132 avoiding






































































































































2.2 Greene Kleitman invariants of the Tamari lattices

REU Exercise 8 gives a proof to the following

Preposition
The length of a longest chain in the Tamari lattice Tamarin

is the same as the length of a longest chain in Sin 2
nCn

The size of a longest chain in the Tamari lattice Tamarin is 2 t 1

Recall Greene Kleiman invariant partition

Thin Greene Heitman The structure of Sperner K families 1976
Let Ak the size of a largest union of k chains of P
LetDk the size of a largest union of k antichains of P
Let Xie Ak Ak for all k and X X 7z
Let Mk Da Day for all k and M Mi Mz

Then X and M are weaklydecreasing and they are conjugate

Here X is oftencalledthe Greene Kleitmaninariantlpartitionof P

sage T5 posetsTamariLattice 5
gives man

DI A chair of P is a collection of disjointchains so that their union is P
An antichainerofP is a collection of disjoint antichains so that their union is P
The site of a chain cover is the number of chains in it

Dilwortheorem
The width of P the site of a largest antichain is the smallest size of a chaincover
1e Dr of positive parts of A
DualofDilworth's Theorem easiertoprove directly
The size of a longest chain of P is the smallest size of an antichain cover
1e Ae of positive parts of M

Optional task Watchvideos of proofs of these two facts
Link under Dilworth's Theorem on literature page






































































































































Remy

By Proposition above the site of a tallest chain in Tamarin is 2 t l
nso the first row of 7 Tamarin is 7 Tamarin 2 11

Thin Thin lol 1.2 Early 2003 Note typo in Thm i i i 2 written prior to SageMath
For n 34 Xi Tamarin Xz Tamarin 4
For n 6 Xz Tamarin Xz Tamarin 2

Them Thin 3.7 Lim Zhang 2008 unpublished student project
For n 38 for a large enough n

there are formulas for 74 Tamarin and 1 Tamarin

REU PROBLEM I part 1 I think part2 of PROBLEM It is more promising

Compute Xk Tamarin for k 6 or more

First try the same technique as Early's and LimeZhang's
Compute the width of Tamarin The first few numbers 44,9 22,61 are not

size of largestantichain in OEIS.org
One way to compute the size of a largest anti chain is to compute the
number of positivepartsof X butmaybe youcould come up with other methods

Possible steps toward PROBLEM II part1

1 Study Early's 2003 8pg paper chainlengths in the Tamari lattice
2 Rephrase Early's argument using triangulations or 312 avoiding permutations

or 132 avoiding permutations Does it make the argument nicer to read

3 Study andstudy the accuracy of Lim e Zhang's report
Previouslyunknownpartsof theGreeneHeitman partition for the Tamari lattice
Eg Thun 3.7 is wrong for n 8 but this could be a minor typo

sage T5 posetsTamariLattice 5

Isi gives man

forPROBLEM part 1Possible alternative project
Write a proof using the same methods as Early's and Lim Zhang's
but using a different realization of the Tamari lattice
possibilities triangulations 312 avoiding permutations Young diagrams which fit

in a rectangular shape






































































































































Ret Sec 5 of
2.3 More properties of the map Mtamari Reading's CambrianLattices 2005

DIE ITCSn has pattern 312 if there exist 1 E i j k Eh with
Tj LTIK Tle53 I 6 2 74 C57For example both 3 i 6 4 7 25 Esp have pattern 312

TESn has pattern 132 if there exist 1 E I L j L k En with
IT LFK L Tig

For example both 5 3 I 2 6 74 E Sz
3 I 4 6 7 25 E Sz have pattern 132

Det If a E Sn haspattern 312 witnessed by Tj L TIK L T
for some 1st j L k E n
If I I 11 then altering IT by switching the entries IT andTite
is called a 312 132 move

Special case of Prop 5.3 Reading's CambrianLattices 2005

Suppose X E y in the weakorder Let 7 7tamari
X is covered byy

Then 7 x 7 y iff
is obtained from y by a 312 132 move

312

132
413

I
143

423

Theseareall L
243132and312avoiding

permutations so wecannot
do a 132 7312 or

312 132
move






































































































































Examples of 3 I 2 132 move

from y to X

o
y

og
M 1I 2674

o JPy 3 I 64725 Y
I a

173464725
31614

g g
3 I 46725 D

Examples of covering y x where

is riot obtained from y by a 312 132 move

o to
y 453 7 6 27 19

Esto y
45 3 1 26 7 19

EE
o 18

Y 35 I 6 4 72 to

o 18
x 35 I 4 6 72 19

EE



Especial case of Lemma 5.5 Cambrian lattices Let 7 7tamari

If IT contains a pattern 312

then IT contains an instance of the pattern 312
such that the 3 and the 1 are adjacent in IT

So if IT contains 312 we can always perform a 312 7 132 move
to go down one level inversion number in the weak order and

still stay in the same fiber 7 MCT
Recall we know this is an interval in the weakorder

We can keep applying a 312 7132 move to permutations which have
the pattern 312 until we get to the minimum element

of the interval 3 MCT Recall that a permutation is

312 avoiding iff it's the minimum element of a fiber of 7


