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Coxeter-Catalan combinatorics and to cluster algebras. © x€ePis Ahe cnaxicum et
LF > 2 2z v 2e¥®

1. A MAP FROM PERMUTATIONS TO TRIANGULATIONS

The road from the Tamari lattice to Cambrian lattices starts with a simple map
from the set S,,+1 of permutations of {1,...,n 4 1} to the set of triangulations of
a convex polygon with n + 3 vertices. This map connects the Tamari lattice to
the weak order on permutations, and opens the door to understanding the Tamari
lattice in a broader lattice-theoretic context.

One of the many realizations of the Tamari lattice is as a partial order on trian-
gulations of a convex polygon. Specifically, take @ to be a convex (n + 3)-gon in

the plane and identify the vertices of () with the numbers 0,1,...,n+1,n+ 2. We
require that the vertices 0 and n + 2 be on a horizontal line, with 0 to the left and
with all other vertices below that line. Furthermore, we require that the vertices 1
through n 4+ 1 be placed so that, for all ¢ from 0 to n + 1, the vertex ¢ is strictly
further left than the vertex ¢ + 1. A correct construction of (), for n = 7, is shown
in the top-left picture of Figure 2 for the case ny= 7.

A triangulation of Q) is a tiling of ) by triangles whose vertices are contained in
the vertex set of (). The triangulation is specified by the collection of n diagonals
of ) appearing as edges of the triangles. A diagonal flip on a triangulation of () is
the operation of removing a diagonal of the triangulation to create a quadrilateral 3 5
from two triangles, and then inserting the other diagonal of the quadrilateral to
create a new triangulation. The Tamari lattice is a partial order on triangulations

A "’T'('aw@\,\\o‘*fov\

of Q whose cover relations are given by diagonal flips. The two triangulations. in e, (1,09,

the cover differ by exactly one diagonal of @, and the higher triangulation in the (g:’(‘r‘%"“ﬂl U‘ﬂ?

cover relation is the one in which this diagonal has larger slope. The Tamari™Nattice, DG, (28

for n.= 3, is shown in Figure 1. Fhe [|abele of
This definition of the Tamari lattice highlights its connection to the associahe- dhe edges are

dron. Since the vertices of the associahedron can be labeled by triangulations of a higher

fixed convex polygon such that edges are given by diagonal flips, the Hasse diagram
of the Tamari lattice is isomorphic to the 1-skeleton of the associahedron.
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FIGURE 2. The triangulation 1(3246175)
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To define the {Weak order, we first write permutations in one-line notation,
meaning that we represent a permutation z of {1,...,n+ 1} by the sequence

XT1Tg -+ Tpy1, where z; means z(i). There is a cover relation = < y in the weak o )
order whenever the one-line notations of x and y differ only by swapping a pair of Trr((;i;:_:,zﬁ'
adjacent entries. The permutation x is the one in which the two entries appear in :+,7e : ('rT
numerical order, and y is the permutation in which the two entries appear out of swapped.
order. For example, the Weak order on Sy is shown in Figure 1.b.
We now define a map 7) from S,,+1 to the set of triangulations of ). Start with a
path along the bottom edges of (), as shown in the first frame of Figure 2. Given a
permutation x € 5,41, read from left to right in the one-line notation for . For each
entry, create a new path by deleting the corresponding vertex from the old path.
The triangulation n(x) is defined by the union of the sequence of paths, as illustrated
in Figure 2 for the permutation with one-line notation 3246175. Figure 3.a shows
the result of applying n to every permutation in S4. The shaded edges indicate
covering pairs in the weak order which map to the same triangulation.
This map and similar maps have appeared in many papers, including [6, 7, 29, 30,
36, 50]. The map can be seen in a broader context in the chapter by Rambau and
Reiner [31] in this volume, specifically by giving some thought to [31, Theorem 9]
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FIGURE 3. a: The map n applied to every permutation in Sy. b:
The Tamari congruence on Sy.

Bjorner and Wachs [7, Section 9] studied a map 7 from permutations to binary
trees that is, up to a standard bijection from triangulations to binary trees, identical
to 7. We describe their results in terms of the map 7. First, the fiber n~!(A) of each
triangulation A is a non-empty interval in the weak order on S, 4+1. A permutation
is the minimal element in its n-fiber if and only if it avoids the pattern 312. That
is, a permutation x is minimal in its fiber if and only if there is no sequence of
three (not-necessarily adjacent) entries in the one-line notation for = such that the
largest of the three is first, followed by the smallest of the three, and finally the
median-valued. Similarly, a permutation is the maximal element in its n-fiber if
and only if it avoids the pattern 132. For example, comparing Figures 1.b and 3.a,
we see that the permufation 4213 1s not the minimal element of its n-fiber, and
indeed, the sequence 413 (or the sequence 423) is an instance of the pattern 312 in
the permutation 4213. However, 4213 is the maximal element in its n-fiber because
it avoids the pattern 132.

Bjorner and Wachs also showed that the weak order and the Tamari lattice
are closely related. Specifically, the restriction of the weak order to 312-avoiding
permutations is a sublattice of the weak order, and the restriction of n to this
sublattice is an isomorphism from the sublattice to the Tamari lattice. This is
readily seen in the case of S; by inspection of Figures 1 and 3.a. The sublattice
of the weak order consisting of 312-avoiding permutations (and thus the Tamari
lattice) is also a quotient of the weak order in an order-theoretic sense. Indeed,
the results of [7] go most of the way to establishing something stronger: As we will
see in Section 2, the Tamari lattice is a lattice quotient (i.e. a lattice-homomorphic
image) of the weak order, because the map 7 is a lattice homomorphism. This is
the key insight that leads to the notion of Cambrian lattices.

Before we shift the discussion to lattice theory, we give a generalization, in a
more combinatorial direction, of the map 7. We will see in Section 3 that this gen-
eralization is also an essential step towards Cambrian lattices. The generalization,
which was exploited in [36], draws on the description in [45, Section 4.3] of a similar
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