| Conjectures about when $\lambda(\omega) = \lambda^{\perp}(\omega)$ .<br>Our Notation of Knuth moves<br>1st kind kit   2nd kind k2t<br>b ca   1<br>b ac   2nd kind k2t<br>b ca   1<br>b ac   2nd kind k2<br>ist kind kit   2nd kind k2<br>cab   1<br>b ac   acb   2nd kind k2<br>b ca   cab   1<br>b ac   acb   2nd kind k2<br>b ca   cab   1<br>b ac   acb   2nd kind k2<br>cab   1<br>b ac   acb   2nd kind k2<br>b ca   cab   1<br>b ac   acb   2nd kind k2<br>i d c b   2nd kind k2<br>b ca   cab   1<br>cab   1<br>b ac   acb   2nd kind k2<br>b ca   cab   1<br>cab   1<br>cab   1<br>b ac   2nd kind k2<br>b ca   cab   1<br>cab   1<br>cab   1<br>cab   1<br>cab   1<br>b ac   2nd kind k2<br>b ca   cab   1<br>cab                                                                                                                                                                                                              | part 31                       | >                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------|
| Our Notation of Knuth moves1st kind kit2nd kind kitb ca $\widehat{1}$ b ac $\widehat{1}$ b ac $\widehat{1}$ ist kind kit2nd kind kitcab $\widehat{1}$ b acacbist kind kit2nd kind kitb acist kind kitb acist kind kitcab $\widehat{1}$ ist kind kit2nd kind kitb acist kind kitcab $\widehat{1}$ ist kind kit2nd kind kitb acist kind kitcab $\widehat{1}$ ist kind kitist kind kitb acist kind kitcab $\widehat{1}$ ist kind kitist kind kitcab $\widehat{1}$ ist kind kitist kind kitcab $\widehat{1}$ ist kind kitist kind kitist kind kitist kind kitcab $\widehat{1}$ ist kind kitist kitist kind kitist kit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conjecture                    | s about when $\lambda(\omega) = \lambda^{L}(\omega)$ .                                        |
| Ist kind kit   2nd kind k2t<br>b ca<br>f<br>b ac<br>f<br>b ac<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Our Notation                  | of Knuth moves                                                                                |
| b ca cab<br>f cab<br>f cab<br>b ac acb<br>ist kind ki 2rd kind k2<br>b ca cab<br>f cab<br>f cab<br>f cab<br>f cab<br>f cab<br>f cab<br>cab<br>f cab<br>f ca                  | 1st kind Rit                  | $2 nd kind k2^{+}$                                                                            |
| A c b       Ist kind kind     ac b       Ist kind kind     ac b       2nd kind ka     ac b       b ca     cab       j     j       b a c     ac b       Conjecture (S)     Chicked up to n=10       • If Solithm Decomposition (T) ≠ Row insertion tableau, P, for TL,       then the reading word of P has consecutive terms br, a.c., bz or       brever     a < b < c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b ca                          | cab                                                                                           |
| Ist kind Ki acb Ist kind Ki 2nd kind K2 b ca cab J cab J cab J cab Conjecture (5) Checked up to n=10 • If Soliton Decomposition (7) ≠ Row insertion tableau, P, for T, - then the reading word of P has consecutive terms br, a.c, b2 or bi, c, a, b2 where a < b < c and a < b2 < c sny "back" or "back" or bi, c, a, b2 where a < b < c and a < b2 < c sny "back" or "back" or bill (200) \$ 24   2 (back) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\uparrow$                    |                                                                                               |
| Ist kind ki<br>Ist kind ki<br>b ca<br>cab<br>cab<br>cab<br>cab<br>cab<br>cab<br>cab<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bac                           | l l                                                                                           |
| <ul> <li>1st kind kind kind kind kind kind kind kind</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                                                                               |
| <ul> <li>b ca (ab)</li> <li>b a c (ab)</li> <li>6 a c (acb)</li> <li>6 a c (acb)</li> <li>6 a c (b)</li> <li>6 a c (b)</li> <li>6 a c (b)</li> <li>6 a c (b)</li> <li>7 a cb)</li> <li>8 a cb)</li> <li>7 a cb)</li> <li>8 a cb)</li> <li>8 a cb)</li> <li>8 a cb)</li> <li>9 a cb)<td>1st kind Ki</td><td>2nd kind k2</td></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1st kind Ki                   | 2nd kind k2                                                                                   |
| <ul> <li>b a c acb</li> <li>Conjecture (5) Checked up to n=10</li> <li>If Soliton Decomposition (T) ≠ Row insertion tableau, P, for TT,<br/>then the reading word of P has consecutive terms br, aic, be or<br/>bl, c, a, be or bl, c, bl, be or</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bcq                           | rab                                                                                           |
| <ul> <li>b a c acb</li> <li>Conjecture (s)</li> <li>If Soliton Decomposition (π) ≠ Row insertion tableau, P, for π,<br/>then the reading word of P has consecutive terms b<sub>1</sub>, a, c, b<sub>2</sub> or<br/>b<sub>1</sub>, c, a, b<sub>2</sub></li> <li>where a &lt; b<sub>1</sub> &lt; c and a &lt; b<sub>2</sub> &lt; c say "back" or "bcab" pattern</li> <li>The contrapositive (is faster to check by computer):<br/><sup>2143</sup>/<sub>3142</sub> (back) <sup>2413</sup>/<sub>3412</sub> (back)</li> <li>The reading word of P(π) has no "back" and no "bcab" pattern,<br/>then Soliton Decomposition (π) = P(π).</li> <li>Prove/disprove: If the reading word r of P(π) has no "back" to no to no to no "back" to no to no</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ļ                             |                                                                                               |
| <ul> <li>Conjecture (s)</li> <li>If Soliton Decomposition (TT) ≠ Row insertion tableau, P, for TT,<br/>then the reading word of P has consecutive terms br, a.C, b2 or<br/>bl, C, a, b2<br/>where a &lt; b, &lt; C and a &lt; b2 &lt; C<br/>Sol back or bcack by computer):<br/>The contrapositive (is faster to check by computer):<br/>If the reading word of P(TT) has no "back" and no "bcak" pattern,<br/>then Soliton Decomposition (TT) = P(TT).<br/>Possible steps to try to prove Conjecture S<br/>Prove/disprove: If the reading word r of P(TT) has no "back" Kn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bac                           | v<br>ac b                                                                                     |
| <ul> <li>If Soliton Decomposition (π) ≠ Row insertion tableau, P, for π,<br/>then the reading word of P has consecutive terms b<sub>1</sub>, a, c, b<sub>2</sub> or<br/>b<sub>1</sub>, c, a, b<sub>2</sub> or<br/>b<sub>1</sub>, c, a, b<sub>2</sub><br/>where a &lt; b<sub>1</sub> &lt; c and a &lt; b<sub>2</sub> &lt; c<br/>say "back" or "bcab" pattern<br/><sup>2</sup> 1 4 <sup>3</sup> (back) <sup>2</sup> 4 1 <sup>3</sup> (back)<br/><sup>3</sup> 1 4 2 (back) <sup>2</sup> 4 1 <sup>3</sup> (back) <sup>2</sup> 4 1 <sup>3</sup> (back) <sup>2</sup> 4 1 <sup>2</sup> (back) <sup>2</sup> 4 1 <sup>2</sup> (back) <sup>3</sup> 4 1 2 (back) <sup>4</sup> 4 1 3 (back) <sup>4</sup> 4 1 4 1 4 1 4 1 4 1 4 1 4 4 1 4 4 1 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</li></ul> | lonjecture (5)                | Checked up to n=10                                                                            |
| then the reading word of P has consecutive terms br, a.c., b2 or<br>bi, c.a., b2<br>where $a \leq b_i \leq c$ and $a \leq b_2 \leq c$<br>say "back" or "bcak" pattern<br>? The contrapositive (is faster to check by computer):<br>if the reading word of P(T) has no "back" and no "bcak" pattern,<br>then Soliton Decomposition (T) = P(T).<br>Possible steps to try to prove Conjecture S<br>Prove/disprove: If the reading word r of P(T) has no "back" K n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . If Soliton Decor            | $mposition(\pi) \neq Row insertion + fableau, P, for \pi,$                                    |
| where $a \leq b_1 \leq c$ and $a \leq b_2 \leq c$<br>. The contrapositive (is faster to check by computer):<br>If the reading word of $P(\pi)$ has no "back" and no "bcak" pattern,<br>then Soliton Decomposition $(\pi) = P(\pi)$ .<br>Possible steps to try to prove Conjecture S<br>Prove/disprove: If the reading word r of $P(\pi)$ has no "back" K n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | then the re                   | ading word of P has consecutive terms by, a.c., b2 or<br>b1, c.a. b2                          |
| <ul> <li>The contrapositive (is faster to check by computer): 3142 (back) 3412 (back)</li> <li>If the reading word of P(π) has no "back" and no "bcok" pattern, then Soliton Decomposition (π) = P(π).</li> <li>Possible steps to try to prove Conjecture S</li> <li>Prove/disprove: If the reading word r of P(π) has no "back" K n</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | where a L b,                  | LC and a Cb2 CC say "back" or "bcak" pattern                                                  |
| Af the reading word of P(TT) has no back and no book partiern,<br>then Soliton Decomposition (TT) = P(TT).<br>Possible steps to try to prove Conjecture S<br>Prove/disprove: If the reading word r of P(TT) has no "back" K n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . The contraposition          | re (is faster to check by computer): 3142 (back) 3412 (block)                                 |
| Possible steps to try to prove conjecture 5<br>Prove/disprove: If the reading word r of PCTD has no "back" Kn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | It the reading<br>then Solito | word of $\Gamma(\pi)$ has no back and no bcak pattern,<br>in Decomposition $(\pi) = P(\pi)$ . |
| Prove/disprove: If the reading word r of P(TT) has no "back" Kn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Possible steps to             | try to prove conjecture 5                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prove/ disprove:              | If the reading word r of P(T) has no "back" K no"                                             |
| pattern,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ρ,                            | attern,                                                                                       |

- If there is a path (of Knuth moves) from r to π
   is such that every edge is a ki move or k2 move (but not both),
   then Soliton Decomposition (π) = P.
- If there is a path (of knuth moves) from br to  $\pi$ is such that every edge is a k1 move or k2 move (but not both), then Soliton Decomposition ( $\pi$ ) = P.

Conjecture/Question 7  $\overline{7a}$  (Not true!) If every path from r to  $\pi$  and every path from br to TT small is such that it contains an edge that is both a ki and ke move, counter example T = 156234 then Soliton Decomposition  $(\pi) \neq P$ . Every path from r to TT and every path from br to TT contains exactly two edges that are both ki and ke moves. 7b) Maybe the following statement is true: If every path from r to π and every path from br to π is such that it contains an even number of ki,kz moves, then Soliton Decomposition  $(\pi) \neq P$ . 7c) If there is a path from r to Tt which consists of an odd number of  $k_1, k_2$  moves, then Soliton Dec  $(\pi) \neq P$ . Applying " Ki-only move or a kz-only move Jt Applying a Ki,ke move changes the height of 2 BBS by 1 or -1.







okemark 1

Let  $w \in S_n$ . Let  $\lambda^{L}(w)$  be the shape of colifon dec of w. We know from Exercise S(Gor. of [LLPS]) that  $\lambda^{L}(w) = -\frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$ 

Remark 2  
Let 
$$w \in Sn$$
, let  $P = P(w)$ , let  $r$  be the row word of  $P$ . Then  $P = P(r)$ .  
let  $\lambda(w) = \lambda(r) = sh P$ , let  $\lambda^{\perp}(w)$  be the shape of Collifon dec of  $w$   
 $\lambda^{\perp}(r)$  be the shape of the soliton dec of  $r$ .  
We know from Exercise 6 that  $\lambda^{\perp}(r) = \lambda(r) (=sh P)$   
Note: For some  $\lambda^{\perp}(w) = \lambda(w) (=sh P)$ , but in general  $\lambda^{\perp}(w) \leq \lambda(w)$   
 $domirance$   
 $order, see$   
PDF: Problem 1 mel  
(See 1.5)

Lemmal Let X, y E Sn.  $[t \quad X \xrightarrow{k} \xrightarrow{k} \xrightarrow{k} \xrightarrow{k} \cdots \xrightarrow{k} \overline{\lambda} \quad (k \circ k \circ \cdots \circ k (x) = \lambda)$ is a path of K1, K1, k2, k2 moves where each move is either a ki move that is not a k2 move or a k2 move that is not a ki move, then the # of posparts of 2 (y) is equal to the # of pos parts of X(X). Pf By Remark 1, for any we Sn, # of pos parts of  $\lambda^{L}(\omega)$  is equal to desc( $\omega$ ) + 1. So we only need to show desc(x) = desc(y). "Suppose ... ac... Ky ... ca... is a ky move but not a ky move.  $\frac{case 1}{k_{1}^{+}(\pi) = \cdots bc|ad...}$   $k_{1}^{+}(\pi) = \cdots bc|a|a_{1}...$   $k_{1}^{+}(\pi) = \cdots bc|a|a_{1}...$   $k_{1}^{+}(\pi) = \cdots bc|a|a_{1}...$   $b \text{ is not a descent since } b \leq c$   $\int k_{1}$   $\pi = \cdots b|ac|a_{1}... \text{ where } a_{1} \leq a$ So  $k_i^+(\pi)$  has the same number of descents as  $\pi$ . · Suppose ... ac... K2 ... ca... is a k2 move but not a ky move. Case 1 Case 2  $T = \dots d a c b \dots where c < d$   $K_{1}^{+}(T) = \dots a_{1}c a b \dots S_{K_{2}}$   $T = \dots d a c b \dots where c < d$   $T = \dots a_{1}a c b \dots where a_{1} < a$ K1(T) = ... d c ab ... So  $K_2^+(\pi)$  has the same number of descents as  $\pi$ . Lemma

OProp 1 Let r be the row reading word of the tableau P. Then we cannot apply K2<sup>t</sup>, that is, the Knuth move of the second kind where we replace -.. acb... with cab...
Pf A perm r = .... acb... Cannot be the reading word of a tableau.

Let r be the reading word of the tableau P. Then we cannot apply Ki, that is, the Knuth move of the 1st kind where we replace --- bca ... with bac ... Counter examples: 2413, 32514, r = 89247, 10, 1356

Prop 2

o True/False? False

Let be the backward reading word of a "backward tableau" bP. Then we cannot apply Kit, the Knuth move of the first kind where we replace ... bac... with .. b ca....

 $\frac{Pf}{Pf} A \text{ perm } br = \dots b | a c \dots cannot be the "backword word" of bP.$ Convention # 1 Gonvention # 2 $<math display="block">\frac{Pr}{456} = \frac{789}{456} \text{ or } Pr = \frac{13}{456} \frac{789}{789}$ 

· Prop 3

Prop 4

br = 789 456 132

Let  $x, y \in S_n$  be such that  $k_1^+(x) = k_2^+(x) = y$ . Then desc(y) = desc(x) - 1  $Pf = y = \dots b_1 c | a b_2 \dots$   $\int k_1^+, k_2^+$   $x = \dots b_1 a c | b_2 \dots$   $a \leq b_1, b_2 < c$ Let  $x, y \in S_n$  be such that  $k_1^-(x) = k_2^-(x) = y$ . Then desc(y) = desc(x) + 1  $Pf = x = \dots b_1 c | a b_2 \dots$   $\int k_1^-, k_2^ y = \dots b_1 a c | b_2 \dots$   $a \leq b_1, b_2 < c$ 

Standard Def

Let TESn

- Let  $i(\pi) := \max \{ k \in [n] \mid \Pi_{i_1} < ... < \Pi_{i_k} \text{ for some } l_1 < ... < i_k \}$ denote the size of a longest increasing subsequence of  $\Pi$ .
- Let u= (41, 42, ...) be a finite sequence of numbers.
- Let  $i(u) := \max [k \ge 1 | U_{i_1} < ... < U_{i_k}$  for some  $i_1 < ... < i_k$ denote the size of a longest increasing subsequence of  $\pi$ .

Choose our notation Let ID := D

Let 
$$I_k := \max_{\pi = u_1 \mid u_2 \mid \dots \mid u_k} \left( i(u_1) + i(u_2) + \dots + i(u_k) \right)$$

where the maximum is taken over ways of writing  $\pi$  as a concatenation  $u_1|u_2|...|u_k$  of consecutive subsequences of  $\pi$ . [LLPS] uses the term "non-interlacing"

Let 
$$\lambda_{k} = \lambda_{k}^{BBS} := I_{k} - I_{k-1}$$
 for  $k \ge 1$   
or  $\lambda_{k}^{L}$   
Let  $\lambda = \lambda_{k}^{BBS} = (\lambda_{1}, \lambda_{2}, \lambda_{3}, ...)$   
 $er \lambda^{L}$   
 $E.g._{1} = \frac{1}{5} \sum 3 6 4$   
 $I_{1} = 1(\pi) = 4$   
 $I_{2} = 5$  (witnessed by  $15|_{2364}, 15236|_{1}, etc)$   
 $I_{3} = 6$   
 $\lambda = (4, 1, 1)$   
 $(M) = \frac{1}{5} \sum 3 6 4$   
 $\lambda = (4, 1, 1)$   
 $(M) = \frac{1}{5} \sum 3 6 4$   
 $($ 



Schendard by:  
• Let 
$$\Pi \in S_{n-1}$$
 We say that  $\Gamma \in [n-1]$  is a descent of  $\Pi$  if  $\Pi_{1} > \Pi_{1+1}$ .  
The descent set of  $\Pi$  is  $Des(\Pi) := \left\{ i \in [n-1] \mid \Pi_{1} > \Pi_{1+1} \right\}$ .  
or  $Desc(\Pi)$  if you profin  
The number of descents of  $\Pi$  is denoted  $des(\Pi)$ , or  $desc(\Pi)$   
• Let  $u = (U_{1}, U_{2}, ...)$  be a sequence of numbers.  
We say that i is a descent of  $u$  if  $U_{1} > U_{1+1}$ .  
The descent set of is  $Des(U) := \begin{cases} i \in \mathbb{Z}_{\geq 1} \mid U_{1} > U_{1+1} \end{cases}$ .  
 $ur Desc(U)$  if you profin  
If  $u$  is finite, the number of descents of  $u$  is denoted  $des(U)$ .  
Choose our convention  
Let  $des^{*}(\pi) := \begin{cases} 0 & \text{if } u$  is the empty sequence  
 $u \in des(U)$   
 $u \in des(U)$   
Let  $des^{*}(\pi) := \begin{cases} 0 & \text{if } u$  is the empty sequence  
 $u \in des(U)$   
 $u \in des(U)$   
Let  $des^{*}(\pi) := D_{k-1} - (\text{for } k \ge 1)$   
 $u \in des^{*}(\pi) = D_{k-1} - (\text{for } k \ge 1)$   
 $u \in M_{k} = M_{k} = D_{k-1} - (\text{for } k \ge 1)$   
 $u \in M_{k} = M_{k} = (D_{k}, D_{k-1}, D_{k-1})$   
 $u \in M_{k} = (D_{k} - D_{k-1} - (\text{for } k \ge 1)$   
 $M^{K} = chope ef (ks tablew)$   
 $M^{K} = M_{k} = \frac{1}{2}$   
 $D_{k} = \delta$   
 $M^{K} = (D_{k} - d_{k} + 1, 1, 1)$   
 $M^{K} = M^{K} = (D_{k-1}, 1, 1)$   
 $M^{K} = M^{K} = M_{k} = M_{k}$   
 $M^{K} = D_{k} \ge M_{k}$   
 $M^{K} = D_{k} \ge M_{k}$   
 $M^{K} = M^{K} = M^{K}$   
 $M^{K} = M^{K} = M^{K}$   
 $M^{K} = M^{K} = M$ 

## Thm 1

T, WE Sn

If IT and w differ by one knuth move that is not both a knuth move of the 1st & and kind,

then  $D_k(\pi) = D_k(\omega) \quad \forall k$ .

Suppose that  $u_1, u_2, \dots, u_k$  are disjoint subsequences of y

s.t. 
$$D_k(y) = des^{(u_1)} + ... + des^{(u_k)}$$

- (We will now show  $D_{k}(y) \leq D_{k}(x)$  by producing disjoint subsequences  $u_{1}', u_{2}', ..., u_{k}'$  of x where  $\sum_{i=1}^{k} des^{*}(u_{i}) \leq \sum_{i=1}^{k} des^{*}(u_{i})$ .) See Fig 1 for 15 different cases.
- First, suppose c and a are in distinct subsequences. (in the figure, all but O-⊙ fit into this case.)
   Then set u; ':= u; for all i∈ [k].
   Since des\*(u;) = des\*(u;) for all i∈ [k], we have D<sub>k</sub>(y) ≤ D<sub>k</sub>(x).
- Next, suppose b, c, and a are in the same subsequence  $u_{j}$  of y. (In the fig, see (3) and (4)).
  - Define  $u_j'$  to be the subsequence of x which is obtained by swapping can with a.c. Define  $u_j' := U_j$  for all  $i \in [k] - ij$ . Then

$$des(u_j) = \left| Des(\ldots, b, c, a, ...) \right| \leq \left| Des(\ldots, b, a, c, ...) \right| = des(u_j), so Dr(y) \leq Dr(k)$$

• Finally, suppose c and a are in the same subsequence, say (wlog), U1, of y and b is in a different subsequence, say, U2, of y. (In fig, see (3,2,0)) Write U1 as a concatenation

$$u_{1} = \underbrace{(\dots, c)}^{u_{1} \text{I}:=} \qquad \underbrace{(u_{1} \text{I}:=}_{(a_{1}, \dots)}$$

of two subsequences  $U_1^{\perp}$  (ending in c) and  $U_1^{\perp}$  (starting in a) of y.

Write U2 as a concatenation

of two subsequences  $u_2^{\perp}$  (ending in b) and  $u_2^{\perp}$  of y. Note that, if  $u_2$  ends in b, then  $u_2^{\perp}$  is empty.



x = ... bacd...

-

Case 1(i) (cort)  $y = k_1^{\dagger}(\pi) = \dots b c a d \dots (c < d)$  $x = \pi = \dots \text{ bacd} \dots$ Suppose that V1, V2, ... J' are disjoint subsequences of ×  $D_k(x) = des^{(1)} + \dots + des^{(1)}$ s.t. (We will now show  $D_k(x) \leq D_k(y)$  by producing disjoint subsequences  $V_1', V_2', ..., V_k'$  of y where  $\sum_{i=1}^k des^*(v_i) \leq \sum_{i=1}^k des^*(v_i)$ . See Fig 2 for 15 different cases. • First, suppose c and a are in distinct subsequences. (In Fig 2, all but 0-3 fit into this case.) Then set  $\mathcal{V}_i' := \mathcal{V}_i$  for all  $i \in [k]$ . Since des\*( $\mathcal{V}_i$ ) = des\*( $\mathcal{V}_i$ ) for all  $i \in [k]$ , we have  $D_k(x) \leq D_k(\mathcal{V})$ . • Next, suppose b, a, c, d are in the same subsequence  $u_j$  of x. (In the fig 2, see  $\mathfrak{S}$ ). Define  $V_j'$  to be the subcequence of  $\times$  which is obtained by swapping b, a, c, d with b, c, a, d. Define  $v_i' := v_i$  for all  $i \in [k] - ij$ . Then des( $\neg z_i$ ) =  $\left| \operatorname{Des}\left((\dots, \underbrace{b}, a, c, d, \dots)\right) \right| = \left| \operatorname{Des}\left((\dots, \underbrace{b}, \underbrace{c}, a, d, \dots)\right) \right| = \operatorname{des}\left(\neg z_i^*\right), s_D \quad D_K(x) \leq D_K(y).$ • Suppose a, c, d are in the same subsequence, say, V1, of X, and b is in a different subsequence, say, V2 of X. (See Fig 2, 3) Write  $V_1 = (..., a, c, d, ...)$  as a concatenation  $V_{1} = (\dots, a) \sqcup (c) \sqcup (d_{1} \dots)$  $V_{1}^{I} \qquad V_{1}^{II}$ of three subsequences VII (ending with a), the one-element sequence (C), of x. and VI (starting with d) Write  $\nabla_2 = (\dots, b, \dots)$  as a concatenation  $V_2 = (\dots, b) \sqcup (\dots)$ of two cubsequences  $V_2^{I}$  (ending with b) and  $V_2^{I}$  of X. Note that, if V2 ends in b, then VI is empty. Define  $V_1' := (\dots, a) \sqcup (d, \dots)$ 

 $\begin{array}{l} \nabla_2':=(\dots,b)\stackrel{\sqcup}{\to}\stackrel{\sqcup}{(\cdot)}\stackrel{\sqcup}{\to}\stackrel{(\cdot)}{\overset{\vee}{_{\mathbb{T}}}} \\ \text{Note that } c \ \text{doesn't contribute to } \ \text{des}(\nabla_1), \ \text{and } b \ \text{doesn't contribute to } \ \text{des}(\nabla_2) \\ \text{If } b \ \text{contributes to } \ \text{des}(\nabla_2), \ \text{then } c \ \text{contributes to } \ \text{des}(\nabla_2'). \ \text{So} \\ \ \text{des}^*(\nabla_1) + \ \text{des}^*(\nabla_2) = \ \text{des}^*(\nabla_1') + \ \text{des}^*(\nabla_2'). \\ \ \text{Hence } \ D_k(x) \leq D_k(y). \end{array}$ 

Finally, suppose c and a are in the same subsequence, say (wlog), Vi, of × and d is in a different subsequence, say, Vz, of ×. (In fig 2, see (4,2), (2), (2))
 Write Vi as a concatenation

$$V_1 = (\dots, a) \sqcup (C, \dots)$$

of two subsequences  $V_1^{\pm}$  (starting in a) and  $V_1^{\pm}$  (ending in c) of X.

Write  $V_2$  as a concatenation

$$V_2^{I} := V_2^{I} :=$$

$$V_2 = (\dots, p) \sqcup (d_1 \dots)$$
may or may not be a descent

of two subsequences  $V_2^{\perp}$  and  $V_2^{\perp}$  (starting with d) of  $\times$ . Note that, if  $V_2$  starts W d, then  $V_2^{\perp}$  is empty.

Define 
$$V_1' := \overbrace{(\dots, a)}^{V_2 I} \sqcup \overbrace{(\ell, \dots)}^{V_1 II}$$
,  
 $V_2' := \overbrace{(\dots, a)}^{V_2 I} \sqcup \overbrace{(\ell_1 \dots)}^{V_2 II}$ ,

and  $\mathcal{V}_{i}' := \mathcal{V}_{i}$  for all  $i \in [k] - \{1, 2\}$ . Then  $des(\mathcal{V}_{i}) \neq des(\mathcal{V}_{2}) \leq des(\mathcal{V}_{i}') \neq des(\mathcal{V}_{2}')$ 

since, if the element to the left of d in  $\nabla_2$  contributes to des $(\nabla_2)$ , this element contributes to des $(\nabla_1^2)$ .

